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Abstract Over the past several decades, the land modeling community has recognized the importance of
nutrient regulation on the global terrestrial carbon cycle. Implementations of nutrient limitation in land
models are diverse, varying from applying simple empirical down‐regulation of potential gross primary
productivity under nutrient deficit conditions to more mechanistic treatments. In this study, we introduce a
new approach to model multinutrient (nitrogen [N] and phosphorus [P]) limitations in the Energy Exascale
Earth System Model (E3SM) Land Model version 1 (ELMv1‐ECA). The development is grounded on (1)
advances in representing multiple‐consumer, multiple‐nutrient competition; (2) a generic dynamic
allocation scheme based on water, N, P, and light availability; (3) flexible plant CNP stoichiometry; (4)
prognostic treatment of N and P constraints on several carbon cycle processes; and (5) global data sets of
plant physiological traits. Through benchmarking the model against best knowledge of global plant and soil
carbon pools and fluxes, we show that our implementation of nutrient constraints on the present‐day carbon
cycle is robust at the global scale. Compared with predecessor versions, ELMv1‐ECA better predicts
global‐scale gross primary productivity, ecosystem respiration, leaf area index, vegetation biomass, soil
carbon stocks, evapotranspiration, N2O emissions, and NO3

‐ leaching. Factorial experiments indicate that
representing the phosphorus cycle improves modeled carbon fluxes, while considering dynamic allocation
improves modeled carbon stock density. We also highlight the value of using the International Land Model
Benchmarking (ILAMB) package to evaluate and document performance during model development.

1. Introduction

Anthropogenic CO2 emissions since the preindustrial era have increased atmospheric CO2 concentrations to
levels that the Earth has not experienced for hundreds of thousands of years (Petit et al., 1999). Such
enhanced atmospheric CO2 dramatically alters the global energy balance via a positive radiative forcing
effect (Myhre et al., 1998). Terrestrial ecosystems currently remove from the atmosphere about a quarter
of anthropogenic CO2 emissions (Houghton, 2007; Le Quéré et al., 2016) via photosynthesis, thus reducing
the warming effects on climate. Furthermore, terrestrial ecosystems have the potential to sequester CO2

more efficiently in the future due to the CO2 fertilization effect (Mao et al., 2016; Norby et al., 2005).

However, this potential benefit from terrestrial ecosystems may be limited because a larger terrestrial CO2

sink requires a greater supply of essential nutrients, particularly nitrogen (N) and phosphorus (P)
(Falkowski et al., 2000). Although human activities have enhanced global N and P availability (e.g., from
agricultural fertilization and fossil fuel combustion; Galloway et al., 2004; Vitousek et al., 1997), at the global
scale these increases are unlikely to satisfy terrestrial ecosystem nutrient demands (Hungate et al., 2003;
Wieder et al., 2015). More importantly, enhanced N and P availability is imbalanced (Penuelas et al.,
2013), with a potential to shift many ecosystems toward a more P limited status.

With decades of observational studies and multiple lines of evidence, it is now generally agreed that current
terrestrial plant growth is often nutrient limited, and these nutrient limitations will be exacerbated under
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higher atmospheric CO2 levels (Hungate et al., 2003; Koerselman &Meuleman, 1996;Wieder et al., 2015; Xia
& Wan, 2008). For example, global meta‐analyses of N and P fertilization experiments (Elser et al., 2007)
revealed widely distributed N and P colimitation on plant productivity in a wide range of terrestrial
ecosystems.

Free Air CO2 Enrichment (FACE) experiments also have provided insights into possible exacerbation of ter-
restrial nutrient limitation under anticipated higher atmospheric CO2 concentrations. Under elevated atmo-
spheric CO2, plants are stimulated to increase tissue construction but require more nutrients to support this
higher productivity (Finzi et al., 2007). From a resources supply point of view, a system will shift to a status
more limited by other resources when the supply of one resource is continuously enhanced (F S Chapin
et al., 1987). Across many FACE experiments, the observed CO2 fertilization effect on plant growth is sus-
tained for only a few years and then diminishes, because the systems shift to more nutrient limited condi-
tions (Norby et al., 2010; Reich et al., 2006; Reich & Hobbie, 2013).

Although they provide characterization of ecosystem nutrient limitation, empirical experiments cover only a
small fraction of global ecosystems, making it difficult to delineate large‐scale nutrient limitation patterns.
To quantify global impacts of nutrient limitations on the carbon cycle, process‐based landmodels are needed
to extrapolate site‐level mechanistic understanding to larger scales (Norby et al., 2016). Prevailing Earth
System Model (ESM) land models (e.g., those participating in Coupled Model Intercomparison Project
Phase 5 [CMIP5; Taylor et al., 2012] and CMIP6 (Eyring et al., 2016)), all consider nitrogen cycles (Gerber
et al., 2010; Goll et al., 2012; Koven et al., 2013; Wang et al., 2010; Xu & Prentice, 2008; Yang et al., 2014;
Zaehle & Dalmonech, 2011; Zhu & Zhuang, 2013). Some of them also consider the phosphorus cycle (Goll
et al., 2012; Wang et al., 2010; Yang et al., 2014). Although these models were built with the concept that
nutrient deficiency limits the carbon cycle, large uncertainties stem from how nutrient limitations are imple-
mented (Medlyn et al., 2016; Tang & Riley, 2018; Zaehle et al., 2014).

In this study, we describe the integration of N and P dynamics in the Energy Exascale Earth System Model
(E3SM) Land Model version 1 (ELMv1‐ECA) and evaluate the model's performance against a wide range of
global‐scale observations. Compared to its predecessor (i.e., the Community Land Model version 4.5
[CLM4.5]), ELMv1‐ECA has several important features, including (1) the equilibrium chemistry approxima-
tion (ECA) as a robust method to resolve multiple nutrient (N and P) competition by multiple consumers
(plants, microbes, and soil mineral surfaces), (2) leaf‐level nutrient effects on photosynthesis, (3) a dynamic
allocation scheme that balances concurrent constraints on plants, and (4) explicit representation of leaf and
root traits that affect growth and nutrient competitiveness. By comparing our model with baseline versions
(CLM4 and CLM4.5), we show an improvement of predictive skill by improving nitrogen constraint and
introducing phosphorus constraint on the carbon cycle.

2. Materials and Methods
2.1. E3SM Land Model

The Energy Exascale Earth SystemModel (E3SM) is a new ESM project sponsored by the U.S. Department of
Energy (DOE; Bader et al., 2014) that focuses on addressing critical questions about the global water cycle,
biogeochemistry, cryosphere, and their interactions with the climate system. The E3SM land model version
zero (ELMv0) originated from the CLM4.5 (CLM4.5‐BGC) with vertically resolved soil biogeochemistry and
a CENTURY‐like soil decomposition cascade (Koven et al., 2013). Both CLM4.5‐BGC and ELMv0 represent
coupled carbon and nitrogen interactions, and here we describe a new representation of coupled C, N, and P
dynamics being integrated in ELM (Figure 1).

2.2. Nutrient Competition in the Plant‐Soil System

Plants, soil microbes, and abiotic factors (e.g., mineral surfaces) reside in the same soil media and compete
for a wide range of nutrients, including those we focus on here: NH4

+, NO3
‐, and PO4

3‐. Because these nutri-
ents are usually limited in availability, strong competitive interactions are expected. This section describes
the methods ELMv1‐ECA uses to represent plant and soil nutrient uptake and competition.
2.2.1. Plant Nutrient Uptake
In ELMv1‐ECA, we model plant N and P uptake by explicitly representing several root traits important for
nutrient acquisition: (1) root nutrient carrier enzyme kinetics, (2) activation and deactivation of nutrient
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carrier enzymes controlled by plant nutritional level, (3) direct plant competition with other soil nutrient
consumers (e.g., microbes), and (4) nutrient carrier enzyme mediated resource uptake preference (e.g.,
NH4

+ versus NO3
‐; e.g., Zhu et al., 2016, 2017):

NFNH4
plant ¼ UNH4

maxCfrootf ECANH4
plant

� �
f CNð Þf Tð Þ; (1)

NFNO3
plant ¼ UNO3

maxCfrootf ECANO3
plant

� �
f CNð Þf Tð Þ; (2)

PFplant ¼ UP
maxCfrootf ECAP

plant

� �
f CPð Þf Tð Þ; (3)

whereUNH4
max,U

NO3
max, andU

P
max are maximum nutrient uptake rates per unit fine root biomass at 25°C for NH4

+,
NO3

‐, and phosphate, respectively (see Table S1 in the supporting information for relevant kinetic para-
meters); Cfroot is fine root biomass; and f(ECA) accounts for multiple‐consumer competition for the same
nutrient.

f (CN) and f(CP) account for the regulation of plant nutritional level on nutrient carrier enzyme activity.

When leaf level C:N or C:P ratio (CNleaf and CPleaf) is smaller than its baseline value (CNleaf
baseline,CP

leaf
baseline),

only a portion of the nutrient carrier enzymes are activated (f (CN) and f (CP)<1), thereby down‐regulating
the plant nutrient uptake rate. This representation therefore follows the idea that plants maintain a healthy
level of internal nutrient stocks to buttress against environmental nutrient supply fluctuations. f (T) is a ver-
tically resolved temperatureQ10 scalar that accounts for the variation of enzyme activity due to the deviation
of soil temperature (Tsoil) from a reference temperature (Tref).

Figure 1. Illustration of Energy Exascale Earth System Model (E3SM) Land Model version 1‐equilibrium chemistry
approximation (ELMv1‐ECA) major features: (1) prognostic leaf N and P content directly coupled to leaf level CO2
sequestration; (2) multiple‐consumer competition network for soil nutrients including NH4

+, NO3
‐, and POx; and (3)

dynamic carbon allocation for leaf, stem, and root that balance whole plant resources acquisition (e.g., N, P, light, and
water). (Free‐living N2 fixation and mycorrhizal fungi are not included in the version applied here).
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f CNð Þ ¼ min
CNleaf−CNleaf

min

CNleaf
baseline−CN

leaf
min

; 1

 !
; (4)

f CPð Þ ¼ min
CPleaf−CPleafmin

CPleafbaseline−CP
leaf
min

; 1

 !
; (5)

f Tð Þ ¼ Q10
Tsoil−Tref

10 : (6)

As an example ECA term, f ECANH4
plant

� �
represents plant competition for soil NH4

+ (seeMethod S1 in the sup-

porting information for full description of all ECA terms):

f ECANH4
plant

� �
¼

Eplant
N

h i
Kplant;NH4

M 1þ NH4½ �
Kplant;NH4

M

1ð Þ þ NO3½ �
Kplant;NO3

M

2ð Þ þ Eplant
N½ �

Kplant;NH4
M

3ð Þ
þ Emic

N½ �
Kmic;NH4

M

4ð Þ
þ Enit

N½ �
Knit;NH4

M

5ð Þ� � ; (7)

where [E] and KM denote enzyme abundance and half saturation constants (i.e., substrate‐enzyme affinity),
respectively. Superscripts and subscripts of KM refer to consumers and substrates, respectively. These equa-
tions account for the effect of (1) multiple substrates (e.g., NH4

+ and NO3
‐) sharing one consumer, which

inhibits the effective binding between any specific substrate and the consumer (terms (1) and (2) in equa-
tion (2)) and (2) multiple consumers (e.g., plants, decomposing microbes, and nitrifiers) sharing one sub-
strate (e.g., NH4

+), which lowers the probability of effective binding between any consumer and NH4
+

(terms (3), (4), and (5) in equation (7)).
2.2.2. Soil Nutrient Uptake
In the century‐like decomposition cascade, there are seven litter and soil organic matter pools with different
turnover times and stoichiometries: (1) coarse woody debris; (2) metabolic, cellulose, and lignin litter (litter
1‐3); and (3) fast, medium, and slowmineral soil pools (SOM 1‐3; Koven et al., 2013). Our approach assumes
that soil microbes immobilize inorganic N and P to maintain their C:N:P stoichiometric balance during
decomposition:

NFpot
soil;i→j ¼ f ijkjCjf θð Þf Tð Þmax

gi
CNj

−
1

CNi
; 0

� �
; (8)

PFpot
soil;i→j ¼ f ijkjCjf θð Þf Tð Þmax

gi
CPj

−
1
CPi

; 0
� �

; (9)

where NFpot
soil;i→j and PFpot

soil;i→j are potential mineral N and P immobilization rates when an upstream soil
organic matter pool i is decomposed. A fraction of the decomposed organic matter remains in the soil (gi
or carbon use efficiency) and is incorporated into the jth downstream pool (fij). kj and Cj are turnover rate
and organic carbon stocks of the jth pool, respectively, and f(θ) and f(T) are soil temperature and moisture
scaling factors, respectively.

Soil nitrifiers consume NH4
+ (NFpot

nit ) to produce NO3
‐ under aerobic conditions. Following the approach in

ELMv0, the potential nitrification rate is modeled as a linear function of NH4
+ substrate concentration:

NFpot
nit ¼ NH4

þ½ �knitf θð Þf Tð Þ 1−f anoxð Þ; (10)

where knit is the maximum fraction of substrate to be consumed.f(θ), f(T), are fanox are soil moisture, tem-
perature, and oxygen scalars, respectively.

Soil denitrifiers consume NO3
‐ to produce N2 and N2O under anaerobic conditions (which can be either in

anaerobic bulk soil layers or the anaerobic fraction of aerobic bulk soil layers; fanox). The potential denitri-
fication rate can be limited by carbon (energy) or NO3

‐ substrate supply:

NFpot
den ¼ min f decompð Þ; f NO3

þ½ �ð Þð Þf anox; (11)

where f(decomp) and f([NO3
+]) are carbon limited and NO3

‐ limited denitrification rates (Del Grosso et al.,
2000).
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In contrast to approaches that assume mineral surface adsorbed P is in equilibrium with solution phosphate
after plant and soil microbe P demands have been satisfied (Yang et al., 2014), in ELMv1‐ECA the potential P
adsorption rate is calculated as the time derivative of the Langmuir isotherm equation (Wang et al., 2010).

PFpot
surf ¼

Usurf
P ⋅Ksurf

P

Ksurf
P þ POx½ �� �2 d POx½ �

dt
⋅ (12)

where Usurf
P and Ksurf

P are Langmuir isotherm parameters representing the maximum adsorption potential
and half saturation constant, respectively, and [POx] represents solution P (i.e., the sum of PO4

3‐, HPO4
2‐,

and H2PO4
‐).

2.2.3. Nutrient Competition
As soil nutrient availability decreases, competitive stresses increase, particularly when the potential nutrient
demands by all nutrient consumers exceed the supply in a given time step. The partitioning of limited nutri-
ents between consumers affects their functioning. Consequently, model predictability of carbon‐nutrient
dynamics is sensitive to the underlying model hypotheses regarding nutrient competition. In ELMv1‐ECA
we adopted a multiple‐consumer‐multiple‐substrate competition network based on the ECA theory (Tang
& Riley, 2013; Zhu et al., 2016; Zhu et al., 2017; Zhu, Riley, et al., 2016). The ECA competition theory repre-
sents (1) nutrient uptake mediated by nutrient carrier enzymes, (2) binding of a nutrient substrate to a spe-
cific enzyme prevents it from binding to other enzymes, and (3) rates and affinities of consumers for the
various substrates.

In the ECA approach, potential immobilization (NFsoil,i → j, PFsoil,i → j), nitrification (NFnit), denitrification
(NFden), and mineral sorption rates (PFsurf; equations (13)‐(17)) are modified by an ECA term that accounts
for (1) multiple consumers competing for a single nutrient species and (2) a single consumer competing for
multiple nutrient species (see Method S1 for description of the ECA terms):

NFsoil;i→j ¼ NFpot
soil;i→j f ECAdec;N

� �
; (13)

PFsoil;i→j ¼ PFpot
soil;i→j f ECAdec;P

� �
; (14)

NFnit ¼ NFpot
nit f ECAnitð Þ; (15)

NFden ¼ NFpot
denf ECAdenð Þ; (16)

PFsurf ¼ PFpot
surf f ECAsurfð Þ: (17)

2.3. N and P Impacts on Carbon Dynamics
2.3.1. Plant Carbon Assimilation
ELMv1‐ECA represents the photosynthesis rate as a function of leaf N (lnc: gN/m2 leaf area) and leaf P (lpc:
gP/m2 leaf area) contents, which are commonly measured leaf properties, and their fundamental controls on
plant photosynthesis rates are widely supported by observations (Kattge et al., 2009; Reich et al., 2009) and
theory (Gardeström & Wigge, 1988; Woodrow & Berry, 1988). ELMv1‐ECA adopts the following relation-
ships to model VCmax25 (maximum carboxylation rate at 25 °C), and Jmax25 (maximum electron transport
rates at 25 °C) as functions of NL and PL (Walker et al., 2014):

ln VCmax25ð Þ ¼ a ln NLð Þ þ b ln PLð Þ þ c ln NLð Þ ln PLð Þ; (18)

ln J max25ð Þ ¼ d ln VCmax25ð Þ þ e ln PLð Þ; (19)

where a, b, c, d, and e are regression coefficients estimated from a photosynthesis data set covering more
than 300 plant species (Walker et al., 2014). These two relationships allow ELMv1‐ECA to dynamically
represent direct nutrient constraints on photosynthesis.
2.3.2. Carbon Allocation
New photosynthates are allocated to different plant organs to satisfy the plant's metabolic demands. To
account for nutrient regulation of carbon allocation, we apply a general allocation framework
(Friedlingstein et al., 1999; Sharpe & Rykiel, 1991) that considers multiple resource availability:
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f∝
∑x

∑x þ∑y
(20)

where f is the fraction of NPP allocated to a certain plant compartment (e.g., stem, j) and x and y represent
resource availabilities. Increasing resource availability xi will increase allocation fraction, and conversely,
increasing resource availability yjwill decrease allocation fraction. Currently, the model considers four types
of resources: carbon (C), nitrogen (N), phosphorus (P), and water (W; see Method S2 for calculation of
resource availability).
2.3.3. Prognostic Plant Stoichiometry
To account for plants' plasticity in assimilating and using nutrients, ELMv1‐ECA allows C:N:P stoichiometry
to be flexible, varying around a baseline value and prognostically determined by leaf level carbon fixation
versus root nutrient uptake. The baseline C:N:P ratio is derived from the TRY database (leaf C:N:P; Kattge
et al., 2009) and a recent synthesis of global fine root, sapwood, and heartwood C:N:P including more than
6,000 plant species (see Table S2 for plant functional type‐specific C:N:P stoichiometry). The model stoichio-
metric baseline and natural variability are based on stoichiometric mean and standard deviation in the data
set (Table S2). Root nutrient uptake is regulated (equations (4) and (5)) so that plant tissue nutritional levels
aremaintained within the range of this observed natural variability, which we estimate to be 40% of the base-
line value. If N or P supply were highly limited, plant biomass construction would be reduced and the excess
nonstructural carbon would be stored within the plant.

2.4. Model Configuration and Benchmarking

Following the simulation protocol of CLM (Oleson et al., 2013), ELMv1‐ECA was first spun up for 1,000
years with accelerated soil decomposition (Koven et al., 2013) followed by a 200‐year regular spin up with
regular soil decomposition to reach a steady state carbon cycle. Soil phosphorus pools were initialized from
observations (Yang et al., 2013) at the beginning of the regular spin‐up. The spin‐up simulations were forced
with repeated meteorology and constant atmospheric CO2 mole fraction (285 ppm). The model was then run
in a transient simulation from 1850 to 2010 with Global Soil Wetness Project (GSWP) reanalysis forcing
(Dirmeyer et al., 2006), transient CO2 concentrations, N deposition (Lamarque et al., 2005), and P deposition
(Mahowald et al., 2008). Model simulations were performed at a 1.9° latitude by 2.5° longitude resolution.

Simultaneously evaluating global land model carbon pool and flux predictions is complex (Luo et al., 2012),
particularly since improving one aspect of model performance can often lead to degradation in others. To
address this problem, the ILAMBv2.2 (International Land Model Benchmarking; Collier et al., 2016;
Hoffman et al., 2017) package was designed to evaluate land models across a wide range of observational
constraints, including ecosystem states, fluxes, and functional responses. The full ILAMBv2 package
includes model evaluations against observations of the carbon cycle, water cycle, energy cycle, and climate
forcing at in situ, regional, and global scales. We focus here on the global patterns of carbon cycle‐related
benchmark metrics, including (1) gross primary productivity and total ecosystem respiration, (2) leaf area
index (LAI), (3) soil carbon stock, (4) aboveground live biomass, and (5) evapotranspiration (ET). The global
patterns of gross primary productivity (GPP) is upscaled from FLUNXET in situ observations (Baldocchi,
2003) using a model tree ensemble (MTE) technique (Beer et al., 2010). FLUXNET‐MTE total ecosystem
respiration is derived from nighttime measurements extrapolated to daytime based on calculated tempera-
ture sensitivities (Reichstein et al., 2005). The global ET benchmark is derived from the annual average of
the GLEAM estimated sum of canopy and soil evaporation, transpiration, bare soil evaporation, and subli-
mation using multiple satellite sensor data (Miralles et al., 2011). The aboveground living biomass bench-
mark is based on more than 4,000 inventory plots and extrapolated to large‐scale with high‐resolution
remote sensing imagery (Saatchi et al., 2011). We include two independent benchmarks for the top 1‐m soil
carbon stock: (1) NCSCD (The Northern Circumpolar Soil Carbon Database) for the northern pan‐Arctic
region (Hugelius et al., 2013) and (2) HWSD (Harmonized World Soil Database) for the globe (Hiederer &
Köchy, 2011). We also benchmark CLM4.0‐CN (Thornton et al., 2007) and CLM4.5‐BGC (Koven et al.,
2013) to show improvements of ELMv1‐ECA modeling skills. Compared with ELMv1‐ECA, CLM4.0 and
CLM4.5 both consider carbon and nitrogen cycles but not phosphorus. Further, CLM4.0 and CLM4.5
employed a relative demand hypothesis for nutrient competition among plants, microbial decomposers,
nitrifiers, and denitrifiers, in which different nutrient consumers take up soil available nutrients based on
their gross demand rather than actual capability. A major improvement of CLM4.5 over CLM4.0 was to
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include a vertically resolved CENTURY type soil decomposition module (Koven et al., 2013). In conducting
simulations, all three models used a similar spin‐up strategy (accelerated spin‐up and regular spin‐up), land
use time series, definition of plant functional type, and global distribution of plant function types. CLM4.0
and CLM4.5 used CRUNEP climate forcing, while ELMv1‐ECA used GSWP3 climate forcing.

3. Results and Discussion
3.1. Global Carbon fluxes

We first evaluate the models using the spatial distribution of long‐term GPP annual means (1982‐2008;
Figure 2). The largest model GPP biases are in Northern American boreal forest ecosystems and lowland tro-
pical ecosystems (overestimation) and Northern Eurasia boreal forest ecosystems (underestimation),
although the globally integrated bias has been reduced compared with CLM4.0‐CN and is similar to that
of CLM4.5‐BGC (Table 1). The spatial pattern and bias of modeled GPP have been largely reduced compared
with the baseline models, resulting in ELMv1‐ECA GPP having the highest score (0.78) for this benchmark
(Table 1).

Since photosynthesis (GPP) synthesizes organic carbon using CO2 via metabolic reactions catalyzed by the
temperature sensitive Rubisco enzyme, GPP is closely related to water availability, temperature, and plant
ET. The observed relationships between those factors and GPP provide useful benchmarks for GPPmodeling
(Figure 3). As ET, temperature, and precipitation increase, observed (i.e., FLUXNET‐MTE) GPP (green line)
first increases, then plateaus, and finally declines due to environmental stresses (e.g., high temperature).
CLM4.0‐CN overpredicts GPP when ET and precipitation are high, while CLM4.5‐BGC and ELMv1‐ECA
are comparable and more consistent with the benchmark. ELMv1‐ECA best captures the observed relation-
ship between GPP and ET, particularly when ET ranges from 2 to 4 mm/day. The three models also share
some common bias features. Consistently, maximal GPP bias from all three models were around 20°C,
which highlight the model deficiency in representing photosynthesis in subtropical ecosystems and an
urgent need for future development and improvement for this particular ecosystem.

In terms of total ecosystem respiration (Reco), all three models shared a similar error spatial structure. That
is, Reco is overestimated in most of the tropical rainforest and northern high‐latitude ecosystems (Figure 4).
However, the integrated error in ELMv1‐ECAwasmuch smaller than that in CLM4.5‐BGC and CLM4.0‐CN,
with their global root‐mean‐square error scores being 0.68, 0.62, and 0.54, respectively (Table 1). We note
that Reco and GPP from the FLUXNET‐MTE product are not independent, because each was derived from
the observed net ecosystem exchange by assuming that respiration is temperature dependent and that night-
time temperature sensitivity is maintained over the diurnal cycle.

Two available benchmarks for net biome production were used in this study, including the Global Carbon
Project (GCP) estimate (Le Quéré et al., 2016) and Hoffman et al. (2014). We found that ELMv1‐ECA agreed
better with the GCP net biome production estimates than with the Hoffman et al., 2014 estimates, over the
time period when ELMv1‐ECA, GCP, and Hoffman et al. (2014) estimates are all available and evaluated in
terms of capturing the interannual variability (Figure S1a in the supporting information) and the overall
probability density distributions (Figure S1b).

3.2. Leaf Area Index

LAI, the single‐sided leaf area per unit ground area, is a critical vegetation property that affects canopy‐scale
photosynthesis. The ILAMB LAI global benchmark is derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) LAI collection 5 product (MCD15A3; Figure 5). Except for the Arctic and
African semiarid regions, all three models tend to overestimate LAI. This overestimation could be due to
model parameter or structural biases and/or MODIS LAI algorithm bias. Previous efforts found that
although MCD15A3 has been significantly improved compared with the collection 4 product, it still under-
estimated maximum LAI for high LAI systems, such as mature forests (De Kauwe et al., 2011). Model‐data
LAI discrepancy is smallest in ELMv1‐ECA, and largest in CLM4.0‐CN (Figure 5). Global mean LAI bias of
ELMv1‐ECA (1.9 m2/m2) is ~30% lower than CLM4.0‐CN and CLM4.5‐BGC (2.2 and 2.3 m2/m2, respec-
tively; Table 1). Although the gridcell level bias of ELMv1‐ECA is much lower compared to the other two
models, ELMv1‐ECA still overestimates LAI over a large fraction of the land surface (e.g., tropics), which
warrants further investigation and improvement of model performance and benchmark data.
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The observed relationship between LAI and precipitation (Figure 6, green line) indicates that lowland tropi-
cal regions (precipitation over 7 mm/day) had the highest potential of developing large LAI. ELMv1‐ECA
LAI in the lowland tropics is about 6 m2/m2 (Figures 5 and 6), while CLM4.0‐CN and CLM4.5‐BGC are 8
and 10 m2/m2, respectively. Given that the satellite‐derived maximummean LAI in tropical regions is prob-
ably substantially underestimated because of cloud contamination (e.g., at a site in Tapajos Brazil,
MCD15A3 indicates LAI of 4 m2/m2, which is ~2 m2/m2 lower than ground camera‐based LAI measure-
ments; Wu et al., 2016) and data algorithm saturation (Heiskanen et al., 2012), an estimate of 6‐7 m2/m2

for tropical forest LAI is expected, which is consistent with the ELMv1‐ECA estimate.

Figure 2. Global patterns of mean gross primary productivity and bias (model‐benchmark) using the International Land
Model Benchmarking (ILAMB) package. Energy Exascale Earth SystemModel (E3SM) LandModel version 1‐equilibrium
chemistry approximation (ELMv1‐ECA) and Community Land Model version 4.5(CLM4.5) performed generally better
than CLM4.0, particularly over the tropical forest region.
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3.3. Evapotranspiration

ET is tightly coupled to leaf level carbon dynamics. For example, in ELMv1 a better representation of photo-
synthesis rate (An) will potentially improve the estimate of stomatal resistance (rs), based on the Ball‐Berry

conductance model (1rs ¼ m An
cs=Patm

hs þ bβt) and thus the calculation of ET. The observed annual ET is higher

in the tropics and lower in the boreal region (Figure 7). Although all three models capture the general
observed spatial distribution, CLM4.0‐CN and CLM4.5‐BGC substantially overpredict ET in the tropics; this
bias is significantly lower in ELMv1‐ECA (Figure 7). All models tend to underestimate ET in the northern
high latitudes, although the absolute biases are smaller than in the tropics. The global mean square error
of ELMv1‐ECA ET is 0.46 mm/day, significantly less than that of CLM4.5‐BGC (0.57 mm/day) and
CLM4.0‐CN (0.66mm/day). Further, the spatial distribution of ELMv1‐ECAET better matched observations
than did CLM4.0‐CN and CLM4.5‐BGC (Table 1).

For precipitation between 6 and 14 mm/day (~2,000‐5,000 mm/year), CLM4.0‐CN predicts relatively higher
ET compared to observations (Figure 8). CLM4.5‐BGC and ELMv1‐ECA both generally follow the observed

Table 1
ILAMB Benchmark Scores for Gross Primary Productivity (GPP), Total Ecosystem Respiration (Reco), Leaf Area Index (LAI), and Evapotranspiration (ET)

Mean RMSE Bias score RMSE score Seasonal cycle score Spatial distribution score Overall score

GPP [Pg/year] [Pg/year]
Benchmark 113
ELMv1‐ECA 126 55 0.80 0.70 0.79 0.94 0.78
CLM4.5‐BGC 127 68 0.73 0.65 0.79 0.92 0.75
CLM4.0‐CN 140 76 0.66 0.60 0.79 0.79 0.67
Reco [Pg/year] [Pg/year]
Benchmark 90
ELMv1‐ECA 120 47 0.79 0.68 0.84 0.89 0.78
CLM4.5‐BGC 122 61 0.72 0.62 0.85 0.83 0.73
CLM4.0‐CN 136 74 0.65 0.54 0.81 0.65 0.64
LAI [m2/m2] [m2/m2]
Benchmark 1.3
ELMv1‐ECA 1.9 1.0 0.64 0.55 0.64 0.81 0.64
CLM4.5‐BGC 2.3 1.4 0.51 0.45 0.62 0.56 0.52
CLM4.0‐CN 2.2 1.3 0.52 0.47 0.66 0.56 0.54
ET [mm/day] [mm/day]
Benchmark 1.2
ELMv1‐ECA 1.2 0.46 0.84 0.74 0.81 0.94 0.81
CLM4.5‐BGC 1.3 0.57 0.80 0.68 0.83 0.92 0.78
CLM4.0‐CN 1.4 0.66 0.73 0.64 0.82 0.86 0.74

Note. The bold numbers represent the best model.
Abbreviations: CLM4.5‐BGC, Community LandModel version 4.5 BGC; ELMv1‐ECA, Energy Exascale Earth SystemModel (E3SM) LandModel version 1‐equi-
librium chemistry approximation; ILAMB, International Land Model Benchmarking; RMSE, root‐mean‐square error.

Figure 3. Empirical relationship between Energy Exascale Earth System Model (E3SM) Land Model version 1‐equili-
brium chemistry approximation (ELMv1‐ECA), Community Land Model version 4.0 CN (CLM4.0‐CN), and CLM4.5‐
BGC modeled gross primary productivity (GPP) and (a) evapotranspiration (b) air temperature, and (c) precipitation. The
error bar represents the variation of GPP within each evapotranspiration (ET), tempearture, or precipitation bins, which
implied a relatively large variation of GPP in all models when a precipitation larger than 7 mm/day.
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pattern, with ELMv1‐ECA having an overall lower bias. However, under low annual precipitation (<6
mm/day), all three models underpredict observed ET. The observed relationship between ET and surface
air temperature is well captured by all three models (Figure 8). ET initially increases as temperature
increases due to higher evaporative energy but declines at very high temperatures, due to the limitation from
other factors (e.g., water availability in tropical drylands) rather than temperature.

3.4. Global Carbon Pools

Our benchmark of global carbon pools here focuses on aboveground living biomass and total soil carbon
stock to 1‐m depth. Highest aboveground biomass (~20 kg C/m2) was observed in the lowland tropics

Figure 4. Global patterns of total ecosystem respiration and bias (model‐benchmark). Biases were relatively larger over
tropical and high latitude ecosystems in Community Land Model version 4.0 (CLM4.0) compared with midlatitude
regions. The tropical model bias was largely reduced in CLM4.5, but not over the high latitudes. In Energy Exascale Earth
SystemModel (E3SM) LandModel version 1‐equilibrium chemistry approximation (ELMv1‐ECA) both tropical and high‐
latitude ecosystems were largely improved, compared with CLM4.0.
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(Figure 9). CLM4.0‐CN and CLM4.5‐BGC predicted the highest biomass density in the lowland tropics, and
their predictions are highly biased (biomass bias of about 50 and 30 kg C/m2, respectively). ELMv1‐ECA
slightly overestimated lowland tropical biomass (Figure 9 and Table 2).

ELMv1‐ECAmatched both NCSCD and HWSD data sets much better than did CLM4.0‐CN or CLM4.5‐BGC
(Table 3). NCSCD and HWSD are two independent, and often inconsistent, observational benchmarks that
may complicate model benchmarking. This problem raises the challenging question of how to harmonize
different observational data sets when benchmarking models. It is also important to mention that
SoilGrid1km (Hengl et al., 2014) is a third well‐known global carbon stock database not yet included in

Figure 5. Global patterns of mean leaf area index (LAI) and bias (model‐benchmark). Spatial patterns and magnitudes of
LAI bias were similar in both Community Land Model version 4.0 (CLM4.0) and CLM4.5 models. Energy Exascale Earth
System Model (E3SM) Land Model version 1‐equilibrium chemistry approximation (ELMv1‐ECA) still overestimated
LAI over a large fraction of the globe, but the magnitude of the bias was generally smaller than in CLM4.0 and CLM4.5.
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ILAMB, and it differs substantially from both NCSCD and HWSD. Currently, ILAMB weights the NCSCD
(45%) and HWSD (55%) metrics to produce an overall score (Collier et al., 2018).

We also evaluated the effects of modeled P cycle and dynamic allocation to modeled carbon pools (living bio-
mass versus soil carbon stock). ELMv1‐ECA with an imposed fixed carbon allocation scheme slightly
improved LAI estimates but biased all other variables (Figure 10). In particular, using fixed carbon allocation
degraded estimates of biomass and SOC. We also note that excluding the P cycle mostly biased the estimates
of carbon fluxes, such as GPP and Reco, but with small effects on biomass and SOC. Overall, ELMv1‐ECA
showed very good ILAMB scores (greenish color in variable z‐score panel of Figure S2) in almost all carbon
cycle metrics. For water cycle metrics, ELMv1‐ECA performed better in ET and latent heat while did worse
in terrestrial water storage than CLM4.0 or CLM4.5. For the energy cycle metrics, ELMv1‐ECA tended to
perform relatively worse in simulating upward shortwave and longwave radiation fluxes and consequently
albedo. For the climate forcing metrics, CRUNCEP and GSWP3 were generally similar (variable score panel
of Figure S2), although GSWP3 was sometime better than CRUNCEP (variable z‐score panel of Figure 3). In
summary, ELMv1‐ECA performed significantly better than CLM4.0 and CLM4.5 in most of the available
metrics including carbon, water, and energy cycles.

3.5. Nutrient Cycle Evaluation

Compared to metrics for the carbon cycle, global‐scale gridded benchmarks for nitrogen and phosphorus
cycles are less available. In this study, we used nutrient fluxes of NO3

‐ leaching and N2O gases loss
(Houlton et al., 2015; Sinha et al., 2017; Zhu & Riley, 2015) to assess the nitrogen loss pathways of
ELMv1‐ECA. Using soil 15N tracer information, the fraction of gaseous (N2O) versus total N (N2O + NO3

‐

leaching) losses (fdenit: Figure 11) was inferred based on different 15N fractionation effects (Houlton et al.,
2015). The latitudinal distribution of observationally‐inferred fdenit indicates that higher proportions of total
N losses occur as gas in the tropics, and this proportion gradually declines toward colder ecosystems. Both
CLM4.0 and CLM4.5 failed in simulating this spatial distribution of fdenit (Houlton et al., 2015), while
ELMv1‐ECA generally captured this latitudinal trend. For the phosphorus cycle, which also lacks a
global‐scale benchmark, we adopt the idea of phosphorus limitation from the leaf C:N:P stoichiometry per-
spective based onWang et al. (2010) and developed a latitudinal distribution of P limitation (Figures 11b and
S3). This metric is defined by leaf level relative abundance of nitrogen and phosphorus. ELMv1‐ECA predic-
tions indicate that ~60% of tropical ecosystems are more phosphorus limited (rather than N limited) and P
limitation is alleviated over temperate ecosystems. Across the southern midlatitude ecosystems, P limitation
indicates that these low‐temperature systems are inefficient in recycling soil phosphorus although the
observed total phosphorus content in high latitude soils (slightly weathered) is much higher than in tropical
soils (strongly weathered; Yang et al., 2013). This modeled P limitation distribution is consistent with current
understanding of the relationship between plant carbon and soil nutrient cycles at a global scale (Houlton
et al., 2008; Walker et al., 2014; Wang et al., 2010).

We evaluated the spatial distribution of leaf nutrient concentrations and leaf to fine root biomass ratios, in
spite of a lack of global‐scale direct measurements, because they represent important aspect of the model in
terms of carbon‐nutrient coupling. The modeled long‐term averaged leaf C to N ratio was highest in

Figure 6. Empirical relationship between leaf area index (LAI) and precipitation. The error bars represent the variation of
LAI rather than the uncertainty. LAI was relatively stable in benchmark data set with little variation across different
precipitation regimes. However, all three models predicted large variation of LAI when precipitation increased from 6 to
14 mm/day. The model‐data biases were also prominent within such precipitation range.
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Figure 7. Global patterns of mean evapotranspiration (ET) and bias (model‐benchmark). Energy Exascale Earth System
Model (E3SM) Land Model version 1‐equilibrium chemistry approximation (ELMv1‐ECA) and Community Land Model
version 4.0 (CLM4.0) overestimated ET over the tropics and underestimated ET over the boreal regions, although the
magnitude of ELMv1‐ECA bias over the tropics is much less. However, CLM4.5 overestimated ET over both tropical
regions and most of the boreal regions.

Figure 8. Empirical relationship between evapotranspiration and (a) precipitation and (b) surface air temperature.
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northern hemisphere tundra ecosystems, and gradually declined toward the tropical rainforest ecosystem
(Figure S3). This spatial pattern reversed for leaf C to P ratio, implying that tropical ecosystems are mostly
P limited. As a result of the strong P limitation over the tropics, the leaf to fine root ratio was higher over
cold regions and relatively lower in tropical ecosystems (Figure S3), which generated a testable hypothesis
that plants tend to allocate more carbon into fine root growth for phosphorus acquisition. Based on
limited site‐level estimates of forest growth in different components, the allocation into leaves is
comparable to that into fine roots (Malhi et al., 2009). A comprehensive evaluation of the ELMv1‐ECA
dynamic allocation scheme will require more observation data.

Figure 9. Global mean aboveground living biomass and bias (model‐benchmark). The large bias of vegetation biomass in
Community Land Model version 4.0 (CLM4.0) was partly reduced in CLM4.5 simulation, and was further reduced in
Energy Exascale Earth SystemModel (E3SM) Land Model version 1‐equilibrium chemistry approximation (ELMv1‐ECA)
over the tropics.
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Although lacking large‐scale observational benchmarks for nutrient cycles, it is still important to document
critical nutrient cycle fluxes and compare them with values reported in previous work. In ELMv1‐ECA, glo-
bal mean N2 fixation rate during the last five decades of the simulation (1961‐2010) of 175 Tg N/year com-
pared well with global N2 fixation estimates from the literature (100‐290 Tg N/year (Cleveland et al.,
1999), 138 Tg N/year (Galloway et al., 2004); Figure S4). ELMv1‐ECA simulation also revealed an increasing
N2 fixation trend, which could be explained by the relief of energetic constraints on nitrogenous activity by
warming and stimulation by progressively stronger P limitation (Houlton et al., 2008). Global nitrogen loss
through hydrological (NO3 leaching and runoff) and gaseous (N2O emissions) pathways were estimated to
be 48 and 11 Tg N/year based on Galloway et al. (2004). ELMv1‐ECA simulated (Figure S4) mean annual
gaseous losses (10 Tg N/year) were consistent with published estimates (Galloway et al., 2004; Mosier,
1994), while ELMv1‐ECA underestimated hydrological NO3 losses (17 Tg/year), partly because the agricul-
ture land N leaching loss was not considered in the simulation. Spatially, most of the gaseous N losses
occurred over tropical regions, where high biological N2 fixation occurs. This pattern implies a relatively
open N cycle in tropical ecosystems. In contrast to the primary N input from biological N2 fixation
(Figure S4a), the primary P input due to weathering declined over time from 1961 to 2010 due to insufficient
replenishment of parent material (39 Tg P/year; Figure S5). Taken together, terrestrial ecosystems progres-
sively became less N limited and more P limited from 1961 to 2010, and these N and P imbalances may con-
tinue or increase over the 21st century. Consistent with this argument, ELMv1‐ECA showed that during the
last five decades, leaf C:P ratio changedmore significantly than leaf C:N ratio (Figure S6). Tropical system C:
P ratio was higher than the initial base value, while nontropical system C:P ratio was similar to the initial
base value. In contrast, tropical system C:N ratio was similar to the initial base value, while nontropical sys-
tem C:N was much higher than the initial base value (comparing the locations of boxes and the beginning of
the line with same color). The simulated P leaching losses were relatively stable, with a mean annual loss of
13 Tg P/year, which agreed with estimates from other modeling studies, for example, 14 Tg P/year in Wang
et al. (2010). Moreover, ELMv1‐ECA simulated a significantly lower P weathering input over tropical ecosys-
tems due to depleted parent material (Yang et al., 2013), compared with temperate ecosystems. ELMv1‐ECA

also had a less prominent tropical‐temperate contrast in P leaching losses,
compared with P weathering.

3.6. Future Improvement Suggested by Benchmarking

Through benchmarking the ELMv1‐ECA predictions, we conclude that
the newmodel captures global patterns of major carbon‐related quantities
better than either of its baseline predecessor models. However, our bench-
marking also reveals important biases against observations and provides
information on model mechanisms (and observational deficiencies) that
may be responsible for the biases.

Plants open stomata to fix atmospheric CO2 and thereby lose water to the
atmosphere. The water use efficiency (WUE; i.e., the ratio between carbon
fixed and water transpired) is a critical physiological characteristic impor-
tant for ecosystem interactions with the atmosphere. Over the Amazon
rainforest and Northern boreal forest ecosystem, ELMv1‐ECA

Table 2
ILAMB Benchmarking Score for Aboveground Living Biomass

Model Period mean [Pg] Bias score Spatial distribution score Overall score

Benchmark 354
ELMv1‐ECA 431 0.63 0.84 0.74
CLM4.5‐BGC 730 0.43 0.54 0.48
CLM4.0‐CN 702 0.45 0.46 0.45

Note. The bold numbers represent the best model.
Abbreviations: CLM4.5‐BGC, Community Land Model version 4.5 BGC; ELMv1‐ECA, Energy Exascale Earth System
Model (E3SM) Land Model version 1‐equilibrium chemistry approximation; ILAMB, International Land Model
Benchmarking.

Table 3
ILAMB Benchmarking Score for Soil Carbon Stock Down to 1‐m Depth With
NCSCD and HWSD Soil Data sets

Model NCSCD score HWSD score Overall score

ELMv1ECA 0.71 0.72 0.71
CLM4.5‐BGC 0.61 0.51 0.55
CLM4.0‐CN 0.29 0.58 0.45

Note. The bold numbers represent the best model.
Abbreviations: CLM4.5‐BGC, Community Land Model version 4.5 BGC;
ELMv1‐ECA, Energy Exascale Earth System Model (E3SM) Land Model
version 1‐equilibrium chemistry approximation; HWSD, Harmonized
World Soil Database; ILAMB, International Land Model
Benchmarking; NCSCD, The Northern Circumpolar Soil Carbon
Database.
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consistently overestimates GPP (Figure 2) and underestimates ET (Figure 7), leading to an overestimate of
ecosystem scale WUE. This WUE overestimation implies that modeled Amazon rainforests and Northern
boreal forests are unrealistically conservative in their water use.

ELMv1‐ECA improved carbon cycle predictions unevenly across latitude. A relatively large improvement is
found in the tropics, implying that the improved phosphorus limitation, nutrient competition, and dynamic
allocation in ELMv1‐ECA are mechanistically important for lowland tropical carbon dynamics (Figure 2).
However, phosphorus limitation and dynamic allocation may play different roles for different aspects of
the carbon cycle (Figure 10). Furthermore, a reliable GPP estimate should be consistent with reasonable
LAI estimates, or a model could reproduce observed GPP by overestimating LAI and underestimating the
leaf level carbon fixation rate (or vice versa). ELMv1‐ECA's predicted LAI bias (Figure 5) is relatively low
in the tropics, particularly given the likely underestimate of tropical MODIS LAI associated with, for exam-
ple, cloud contamination and MODIS algorithm saturation (Heiskanen et al., 2012). ELMv1‐ECA overesti-
mated LAI in general, but relative biases were lower than either baseline model (Figure 5 and Table 1).
We note that although the absolute bias is small, the relative GPP bias ((model minus observations)/obser-
vation) in the pan‐Arctic region was similar (67.5‐90°N ~14%), compared with pan‐Tropical region (‐23.5 S
—23.5°N ~16%) and larger than temperate region (23.5—67.5°N ~4%), given that observed arctic GPP is low.

It is challenging to reasonably predict soil carbon stocks. Todd‐Brown et al. (2013) showed that most of the
carbon‐only land models overestimated SOC stocks, while the only model in the CMIP5 analysis that repre-
sented nitrogen cycling substantially underestimated SOC stocks (CCSM4). ELMv1‐ECA estimated the glo-
bal SOC stock to 1‐m depth to be ~1,100 Pg C, which is lower than that of CLM4.5‐BGC (~1,800 Pg C) and
higher than that of CLM4.0‐CN (~600 Pg C; benchmark 1,270 Pg C; Todd‐Brown et al., 2013). Predicted SOC
stocks result from the balance between soil carbon inputs and losses through respiration (erosion and leach-
ing are not yet represented). Although there is no global data set of litter inputs, we have higher confidence
in this predicted flux compared with the base models because of the overall improvement in predicted car-
bon cycle metrics in ELMv1‐ECA (Figures 2–6). In addition, the soil carbon turnover rates applied in
ELMv1‐ECA have been evaluated against some radiocarbon observations (Koven et al., 2013). In other work,
we have extended this type of evaluation with a rich data set of soil radiocarbon profiles (Chen et al., 2019).

ELMv1‐ECA introduced many new parameters to support model development. Although most of the para-
meters are directly measurable and largely constrained by existing databases (Tables S1 and S2), we

Figure 10. International Land Model Benchmarking (ILAMB) evaluation of individual components in Energy Exascale
Earth System Model (E3SM) Land Model version 1‐equilibrium chemistry approximation (ELMv1‐ECA). The y axis
starts from 0.55 for better visualization. Compared with the full ELMv1‐ECA model (red bars), the dynamic allocation
scheme (yellow bars) mostly affects biomass, leaf area index (LAI), and soil organic carbon (SOC), state variables, while
the phosphorus cycle (green bars) reduces model performance of carbon fluxes (GPP: gross primary productivity; Reco:
total ecosystem respiration).
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acknowledge potential tradeoffs of benefits associated with more mechanistic representations versus
parameter uncertainty. Future work will be focused on parameter sensitivity and uncertainty quantification.

3.7. Suggestions and Limitations

Land models have been intensively evaluated from in situ to global scales, but commonly against only a few
metrics in each evaluation. We suggest that the land‐modeling community will benefit from systematic
benchmarking against multiple data sets during model development. A disaggregated (i.e., against indivi-
dual observations) and overall (i.e., combining the evaluation into a single metric) model benchmarking
approach allows a consistent and repeatable evaluation of model improvements over time. Considering a
wide range of metrics also informs whether changes to a model that improve a given process representation
simultaneously degrade other model predictions.

We here focus our analysis on the present‐day carbon cycle; more work is needed to evaluate nitrogen (N)
and phosphorus (P) cycle dynamics against observational benchmarks (Bouskill et al., 2014). We suggest sev-
eral nutrient cycle benchmarks urgently needed for land model development that will be integrated in a
future version of ILAMB. First, global patterns of N and P fluxes, including the major nutrient input fluxes
of N2 fixation (Cleveland et al., 1999) and phosphatase activity, induced phosphorus input flux (Margalef
et al., 2017). Second, isotopic tracer studies (e.g., 15N and 33P) are particularly useful to inform partitioning
of N and P between plants and microbes, a key determinant of ecosystem C dynamics (Kuzyakov & Xu,

Figure 11. Latitudinal distribution of Energy Exascale Earth System Model (E3SM) Land Model version 1‐equilibrium
chemistry approximation (ELMv1‐ECA) modeled: (a) fdenit (fraction of denitrification gaseous N loss to total gaseous
and hydrological N loss; Houlton et al., 2015); (b) leaf C:N:P stoichiometry based evaluation of terrestrial ecosystem P
limitation (Wang et al., 2010).
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2013), and relative competitiveness of individual competitors (F Chapin & Bloom, 1976; Keuper et al., 2017;
Zhu, Iversen, et al., 2016; Zhu & Riley, 2015; Zhu et al., 2017; Zhu, Riley, et al., 2016). Third, transient
responses of the carbon cycle to nutrient availability can provide insight into nutrient limitation effects. In
this sense, N and P fertilization experiments (LeBauer & Treseder, 2008), especially those that span
multiple years, and FACE experiments (Zaehle et al., 2014), are particularly useful to inform carbon‐
nutrient interactions.

4. Conclusions

In this study, we show new developments in the E3SM land model (ELMv1‐ECA) in terms of nitrogen and
phosphorus cycles and their coupling with carbon dynamics. ELMv1‐ECA has several new features in terms
of nutrient dynamics and carbon‐nutrient coupling that are conceptually different from its predecessors
(CLM4.0‐CN and CLM4.5‐BGC). We benchmark ELMv1‐ECA, CLM4.0‐CN, and CLM4.5‐BGC carbon cycle
predictions using the ILAMB (International Land Model Benchmarking) package and conclude that
ELMv1‐ECA robustly represents the present‐day carbon cycle by comparison with observed gross primary
productivity, total ecosystem respiration, LAI, ET, vegetation biomass, and soil carbon stocks. The new
model is a substantial improvement compared to its predecessor models. We also show that model bench-
marking against multiple data sets is helpful and conclude that continuously benchmarking throughout
model development can help improve land model performance.
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