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7 Lakes
7.1 Experiments
Simulations of climate-change effects on lakes will be made using coupled lake-hydrodynamic and water-quality models. Models can operate onthe global scale (uncalibrated) or on a number of case-study lakes (calibrated). Both global and local models will conduct the same set ofsimulations.
Table 14: Summary of experiments for lake models.
Climate Data Scenario Human Impacts Other settings (sens-scenario) # runsWATCH-WFDEI Hist nosocpressocvarsoc

historical CO2 (co2) 3

GSWP3-W5E5 Hist nosocpressocvarsoc
historical CO2 (co2) 3

GSWP3-EWEMBI Hist nosocpressocvarsoc
historical CO2 (co2) 3

GSWP3 Hist nosocpressocvarsoc
historical CO2 (co2) 3

PGMFD v2.1 (Princeton) Hist nosocpressocvarsoc
historical CO2 (co2) 3

WATCH (WFD) Hist nosocpressocvarsoc
historical CO2 (co2) 3

See Table 6 and Table 7 for an explanation of the nosoc, pressoc, and varsoc experiments. Depending on whether and how human influences areincluded, a given model may not be able to run all three experiments.



7.2 Sector-specific input data
Global lake modelsGlobal-scale simulations should be performed either assuming a lake present in every pixel or using grid-scale lake fraction based on the GlobalLake and Wetland Database (GLWD) (Lehner & Döll, 2004) and available on the DKRZ input data repository at
/work/bb0820/ISIMIP/ISIMIP2a/InputData/lakes/pctlake.nc4 (Subin, Riley, & Mironov, 2012). Since a 0.5°x0.5° pixel potentially contains multiple lakeswith different characteristics (e.g. in terms of bathymetry, transparency, fetch), it is not possible to fully represent this subgrid-scaleheterogeneity. Instead, the global-scale lake simulations should represent a ‘representative lake’ for a given pixel. Consequently, no stringentrequirement is imposed with respect to lake depth, light extinction coefficient or initial conditions.For lake depth, modellers are encouraged to use the data from the Global Lake Data Base (GLDB). A regridded lake depth field based on GLDBv1(Kourzeneva, 2010) is available at 0.5°x0.5° resolution on the DKRZ input data repository at
/work/bb0820/ISIMIP/ISIMIP2a/InputData/lakes/lakedepth.nc4; this field was aggregated from 30 arc sec to 1.9°x2.5° and then interpolated again to0.5°x0.5° (Subin, Riley, & Mironov, 2012), but modellers may choose to use the more recent GLDBv2 available at 30 arc sec (http://www.flake.igb-berlin.de/ep-data.shtml) (Choulga, Kourzeneva, Zakharova, & Doganovsky, 2014). Modellers are requested to document their approach regardinglake depth, light extinction coefficient and initial conditions in the ISIMIP Impact Model Database (www.isimip.org/impactmodels). In case the lakemodel has no built-in calculation of the light extinction coefficient, modellers may consider using the parameterisation proposed by (Shatwell,Thiery, & Kirillin, 2019): extcoeff = 5.681 * max(depth,1) ^(-0.795), derived from a collection of 1258 lakes, or the parameterisation proposed by(Håkanson, 1995): extcoeff = 1.1925 * max(lakedepth,1)^(-0.424), derived from 88 Swedish glacial lakes. Yet it should be noted that modellers arefree to decide how to represent extinction coefficient.
Local lake modelsSimulations will be made for case-study lakes selected based on the availability of high-quality meteorological and limnological observations,thereby aiming for a good spread across climates and lake types. Model inputs consist of the meteorological variables given in Table 1, waterinputs from hydrological model simulations, and nutrient loads estimated using simple loading function (Haith & Shoemaker., 1987)(Schneiderman, Pierson, Lounsbury, & Zion, 2002) or statistical estimation procedures. In addition, site-specific data will be needed such as lakebathymetry data. Direct climate effects on lakes that influence factors such as water temperature stratification period, mixing depth etc. will besimulated using climate scenarios shown in Table 14, and water inflows from hydrologic model simulations based on the experiments described inSection 6. Lake water quality simulations, which affect factors such as phytoplankton and nutrient levels, will also need to include simple nutrientloading inputs linked to the hydrologic model simulations.
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ReportingAll variables are to be reported as time-averages with the indicated resolution.For depth-varying variables, data should be provided either as fully resolved vertical profiles, or, if that is not possible, as a mean of the epilimnionor mixed layer (“mean epi”) and mean of the hypolimnion (“mean hypo”). When the lake is simulated as completely mixed or isothermal, themean of the entire water column is assigned to the epilimnion, and the hyolimnion concentration is set to a missing value.See section 5.1.5 for further information on file formatting.
Diagnostic for lake stratificationAs density is a non-linear function of temperature and a global analysis requires examination of a wide range of lake temperatures it is preferableto use a density-derived definition of stratification to a purely temperature-related definition, as follows:Calculate density (ρ) from temperature using the formula (Millero & Poisson, 1981):ρ = 999.842594 + (6.793952 x 10-2 t) – (9.095290 x 10-3 t2) + (1.001685 x 10-4 t3) – (1.120083 x 10-6 t4) + (6.536336 x 10-9 t5),where t is water temperature of the lake layer in °C.Define the lake to be stratified whenever the density difference between the surface and the bottom of the lake is greater than 0.1 kg m-3. Notethis definition does not distinguish between ‘normal’ and ‘reverse’ stratification. Reverse stratification means that the surface is colder than thebottom, but the surface water density is less than the maximum density of water, found particularly under ice. While a separate step can be usedto distinguish these events by assessing whether the surface temperature is greater than or less than 3.98 °C, this separation is not requested bythe protocol.Note that the range of model outputs will vary from model to model. Below are generic outputs that capture the basic information provided bymost lake-eutrophication models. Modelling groups whose models do not provide all information listed here are invited to report on the reducedset of variables implemented in their models.

7.3 Output Data
Table 15: Output variables to be reported by lake models.
Variable (longname) Variable name Unit (NetCDFformat) Spatial Resolution TemporalResolution DepthResolution Comments

Hydrothermal VariablesThermal strat unitless Representative lake Daily None 1 if lake grid cell is thermally stratified



stratification associated with gridcell 0 if lake grid cell is not thermallystratifiedDepth ofThermocline thermodepth m Representative lakeassociated with gridcell
Daily None Depth corresponding the maximumwater density gradient

Water temperature watertemp K Representative lakeassociated with gridcell
Daily Full Profile Simulated water temperature. Layeraverages and full profiles. See Section5.1.5 for details on reporting

Surfacetemperature surftemp K Representative lakeassociated with gridcell
Daily (monthly) None Average of the upper layer in case notsimulated directly

Bottomtemperature bottemp K Representative lakeassociated with gridcell
Daily (monthly) None Average of the lowest layer in case notsimulated directly

Lake ice cover ice unitless Representative lakeassociated with gridcell
Daily None 1 if ice cover is present in lake grid cell0 if no ice cover is present in lake gridcell

Lake layer ice massfraction lakeicefrac unitless Representative lakeassociated with gridcell
Daily (monthly) Mean Epi Fraction of mass of a given layer takenup by ice

Ice thickness icethick m Representative lakeassociated with gridcell
Daily (monthly) None

Snow thickness snowthick m Representative lakeassociated with gridcell
Daily (monthly) None

Temperature at theice upper surface icetemp K Representative lakeassociated with gridcell
Monthly None

Temperature at thesnow upper surface snowtemp K Representative lakeassociated with grid Monthly None
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cell
Sensible heat flux atthe lake-atmosphereinterface

sensheatf W m-2 Representative lakeassociated with gridcell
Daily (monthly) None At the surface of snow, ice or waterdepending on the layer in contact withthe atmosphere. Positive if upwards.

Latent heat flux atthe lake-atmosphereinterface

latentheatf W m-2 Representative lakeassociated with gridcell
Daily (monthly) None See sensible heat flux

Momentum flux atthe lake-atmosphereinterface

momf kg m-1 s-2 Representative lakeassociated with gridcell
Daily (monthly) None See sensible heat flux

Upward shortwaveradiation flux at thelake-atmosphereinterface

swup W m-2 Representative lakeassociated with gridcell
Daily (monthly) None See sensible heat flux.Not to be confused with net shortwaveradiation

Upward longwaveradiation flux at thelake-atmosphereinterface

lwup W m-2 Representative lakeassociated with gridcell
Daily (monthly) None See sensible heat flux.Not to be confused with net longwaveradiation

Downward heatflux at the lake-atmosphereinterface

lakeheatf W m-2 Representative lakeassociated with gridcell
Daily (monthly) None See sensible heat fluxthe residual term of the surface energybalance, i.e. the net amount of energythat enters the lake on daily time scale:lakeheatf = swdown - swup + lwdown -lwup - sensheatf - latenheatf(terms defined positive when directedupwards)

Turbulent diffusivityof heat turbdiffheat m2 s-1 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi and

Only if computed by the model. SeeSection 5.1.5 for details on reporting



mean hypo
Surface albedo albedo unitless Representative lakeassociated with gridcell

Daily (monthly) None Albedo of the surface interacting withthe atmosphere (water, ice or snow)
Light extinctioncoefficient extcoeff m-1 Representative lakeassociated with gridcell

Constant None only to be reported for global models,local models should use extcoeff as input
Sediment upwardheat flux at thelake-sedimentinterface

sedheatf W m-2 Representative lakeassociated with gridcell
Daily (monthly) None Positive if upwards. Only if computed bythe model

Water Quality Variables
ChlorophyllConcentration chl g-3 m-3 Representative lakeassociated with gridcell

Daily (monthly) Either fullprofile, ormean epi andmean hypo

Total water chlorophyll concentration –indicator of phytoplankton. See Section5.1.5 for details on reporting
PhytoplanktonFunctional groupbiomass

phytobio mole m-3as carbon Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

Different models will have differentnumbers of functional groups so that thereporting of these will vary by model.See Section 5.1.5 for details on reporting
Zoo planktonbiomass zoobio mole m-3as carbon Representative lakeassociated with gridcell

Daily (monthly) Either fullprofile, ormean epi andmean hypo

Total simulated Zooplankton biomass.See Section 5.1.5 for details on reporting

Total Phosphorus tp mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

See Section 5.1.5 for details on reporting

ParticulatePhosphorus pp mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

See Section 5.1.5 for details on reporting
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Total DissolvedPhosphorus tpd mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

Some models may also output data forsoluble reactive phosphorus (SRP). SeeSection 5.1.5 for details on reporting
Total Nitrogen tn mole m-3 Representative lakeassociated with gridcell

Daily (monthly) Either fullprofile, ormean epi andmean hypo

See Section 5.1.5 for details on reporting

Particulate Nitrogen pn mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

See Section 5.1.5 for details on reporting

Total DissolvedNitrogen tdn mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

Some models may also output data forNitrate (N02) nitrite (NO3) andammonium (NH4). See Section 5.1.5 fordetails on reporting
Dissolved Oxygen do mole m-3 Representative lakeassociated with gridcell

Daily (monthly) Either fullprofile, ormean epi andmean hypo

See Section 5.1.5 for details on reporting

Dissolved OrganicCarbon doc mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

Not always available. See Section 5.1.5for details on reporting

Dissolved Silica si mole m-3 Representative lakeassociated with gridcell
Daily (monthly) Either fullprofile, ormean epi andmean hypo

Not always available. See Section 5.1.5for details on reporting



7.4 Additional information for local lakemodels
7.4.1 Lake sites
Table 16: Lake site specifications for local lake models. A document with additional information is maintained by the sector coordinators and
provided at https://docs.google.com/spreadsheets/d/1UY_KSR02o7LtmNoOs6jOgOxdcFEKrf7MmhR2BYDlm-Q/edit#gid=555498854.
Lake name Lake name in file name(reporting) Reservoir or lake? Country Latitude (dec deg) Longitude (dec deg)
Allequash Lake allequash lake USA 46,04 -89,62
Alqueva Reservoir alqueva reservoir Portugal 38,20 -7,49
Lake Annecy annecy lake France 45,87 6,17
Lake Annie annie lake USA 27,21 -81,35
Lake Argyle argyle reservoir Australia -16,31 128,68
Lake Biel biel lake Switzerland 47,08 7,16
Big Muskellunge Lake big-muskellunge lake USA 46,02 -89,61
Black Oak Lake black-oak lake USA 46,16 -89,32
Lake Bourget bourget lake France 45,76 5,86
Lake Burley Griffin burley-griffin reservoir Australia -35,30 149,07
Crystal Lake crystal-lake lake USA 46,00 -89,61
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Crystal Bog crystal-bog lake USA 46,01 -89,61
Delavan Lake delavan lake USA 42,61 -88,60
Dickie Lake dickie lake Canada 45,15 -79,09
Eagle Lake eagle lake Canada 44,68 -76,70
Ekoln basin of Mälaren ekoln lake Sweden 59,75 17,62
Lake Erken erken lake Sweden 59,84 18,63
Esthwaite Water esthwaite-water lake United Kingdom 54,37 -2,99
Falling Creek Reservoir falling-creek reservoir USA 37,31 -79,84
Lake Feeagh feeagh lake Ireland 53,90 -9,50
Fish Lake fish lake USA 43,29 -89,65
Lake Geneva geneva lake France/Switzerland 46,45 6,59
Great Pond great lake USA 44,53 -69,89
Green Lake green lake USA 43,81 -89,00
Harp Lake harp lake Canada 45,38 -79,13



Kilpisjärvi kilpisjarvi lake Finland 69,03 20,77
Lake Kinneret kinneret lake Israel 32,49 35,35
Lake Kivu kivu lake Rwanda/DR Congo -1,73 29,24
Klicava Reservoir klicava reservoir Czechia 50,07 13,93
Lake Kuivajarvi kuivajarvi lake Finland 60,47 23,51
Lake Langtjern langtjern lake Norway 60,37 9,73
Laramie Lake laramie lake USA 40,62 -105,84
Lower Lake Zurich lower-zurich lake Switzerland 47,28 8,58
Lake Mendota mendota lake USA 43,10 -89,41
Lake Monona monona lake USA 43,06 -89,36
Mozhaysk reservoir mozhaysk reservoir Russia 55,59 35,82
Mt Bold mt-bold reservoir Australia -35,12 138,71
Lake Müggelsee mueggelsee lake Germany 52,43 13,65
Lake Neuchâtel neuchatel lake Switzerland 46.54 6.52
Ngoring ngoring lake China 34,90 97,70



53

Lake Nohipalo Mustjärv nohipalo-mustjaerv lake Estonia 57,93 27,34
Lake Nohipalo Valgejärv nohipalo-valgejaerv lake Estonia 57,94 27,35
Okauchee Lake okauchee lake USA 43,13 -88,43
Lake Pääjärvi paajarvi lake Finland 61,07 25,13
Rappbode Reservoir rappbode reservoir Germany 51,74 10,89
Rimov Reservoir rimov reservoir Czechia 48,85 14,49
Lake Rotorua rotorua lake New Zealand -38.08 176.28
Lake Sammamish sammamish lake USA 47,59 -122,10
Sau Reservoir sau reservoir Spain 41,97 2,40
Sparkling Lake sparkling lake USA 46,01 -89,70
Lake Stechlin stechlin lake Germany 53,17 13,03
Lake Sunapee sunapee lake USA 43,23 -72,50
Lake Tahoe tahoe reservoir USA 39,09 -120,03
Lake Tarawera tarawera lake New Zealand -38,21 176,43



Lake Taupo taupo lake New Zealand -38,80 175,89
Toolik Lake toolik lake USA 68,63 -149,60
Trout Lake trout-lake lake USA 46,03 -89,67
Trout Bog trout-bog lake USA 46,04 -89,69
Two Sisters Lake two-sisters lake USA 45,77 -89,53
Lake Vendyurskoe vendyurskoe lake Russia 62,10 33,10
lake Võrtsjärv vortsjaerv lake Estonia 58,31 26,01
Lake Waahi waahi lake New Zealand 37,33 175,07
Lake Washington washington lake USA 47,64 -122,27
Windermere windermere lake United Kingdom 54,31 -2,95
Lake Wingra wingra lake USA 43,05 -89,43
Zlutice Reservoir zlutice reservoir Czechia 50,09 13,11
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