
Fact Sheet: Bias correction in the ISI-MIP

Bias correction methods are often applied within Climate impact studies to 
correct  the  climate  input  data  provided  by  General  Circulation  Models 
(AOGCMs)  or  regional  climate  models  for  systematic  statistical  deviations 
from  observational  data.  They  generally  adjust the  long-term  mean  by 
adding the average difference between the simulated and observed data 
over the historical period to the simulated data, or by applying an associated 
multiplicative correction factor. In addition, differences between the variance 
of the simulated and observed data are often corrected.

Bias correction is advantageous for the following reasons:

● It allows for comparison of observed and simulated impacts during the 
historical reference period, and for a smooth transition into the future.

● The bias corrected data for the future period account for changes in 
the  climate  variables  in  comparison to  the  current  status.  Accurate 
description  of  impacts  that  are  triggered  when  certain  critical 
thresholds (in temperature or precipitation, for example) are exceeded, 
require  such  an  adjustment  to  the  reference  starting  level.  Simply 
describing  the  change  in  impacts  starting  from  an  uncalibrated 
climate-model-based  reference  level,  cannot  capture  this  threshold-
activated behaviour. 

● Adjustment of the variance of the simulated data may help to get a 
more realistic understanding of the impacts that  depend on changes in 
both the mean and variability of the data.  As the AOGCM data are 
provided  on  a  coarser  grid  (approximately  2  x  2  degree)  than  the 
observational data, correction of the variance ensures that a realistic 
(higher) variance is attributed to the downscaled data (on the 0.5 x 0.5 
degree ISI-MIP grid).  Such a variability change is not captured by a 
simple interpolation of the GCM data.

● Bias correction also incorporates the more detailed height information 
associated with the observational data. 

On the other hand, there are serious disadvantages:



● Even  the  most  basic  bias  correction  method  (adding  the  mean 
deviation from the observed data to the simulated data) destroys the 
physical consistency of the data.

● Some bias correction methods (such as the one described by Piani et 
al.,  2010)  have the  potential  to  change  the  trend  in  the  simulated 
climate  data.  While  adequately  representing  the  mean state  of  the 
observed period and the  associated  variability,  these methods  may 
change  the  climate  signal  (absolute  changes  in  temperature  and 
relative  changes  in  precipitation)  projected  by  the  AOGCMs.  This 
corresponds to introducing a new level of uncertainty, comparable in 
magnitude  to  the  inter-AOGCM  spread  of  the  climate  projections 
(Hagemann et al., 2011). 

Within ISI-MIP we decided to apply a bias correction method, fully aware of 
these disadvantages, since the described advantages are essential  to the 
description of changes in impacts. However, given the lively debate related 
to this  issue,  we are committed to  describing transparently  what  climate 
change information is actually retained from the AOGCMs and what is lost. 

We  modified  the  Piani  et  al.  (2010)  approach  to  preserve  the  absolute 
temperature changes  and the relative changes in precipitation and other 
variables  as  fundamental  elements  of  the  AOGCM projections.   Here  we 
describe the algorithm.

1. Adjustment of the monthly mean values

1.1 Temperature

The bias correction algorithm for temperature preserves the monthly mean 
values provided by the AOGCM, by adding a grid-point and month specific 
(one  for  January,  one  for  February  etc.)  constant  offset.  In  this  way  the 
absolute changes in temperature are not modified by the bias correction but 
the reference starting level is adjusted to the observational level provided by 
a 40-year average of the Watch data.  

It is essential for ISI-MIP that the absolute temperature changes projected by 
the  AOGCMs  are  not  changed,  since  the  project  is  dedicated  to  the 
description of impacts at different levels of global warming. As the global 
warming  information  provided  will  be  based  on  the  non-bias-corrected 
monthly AOGCM data (the observational data needed for the bias correction 



are not available over the ocean) we must ensure that it stays consistent 
with the climate change signal used within the impact simulations.

The  minimum  and  maximum  daily  temperatures  (Tmin and  Tmax 
respectively) are also corrected for systematic bias.  The algorithm ensures 
that  in  the  historical  period,  the  mean  distance  between  the  maximum 
(minimum) daily temperature value and the daily average temperature (T) is 
preserved.   This  is  achieved  by  calculating  the  following  factor  over  the 
historical period:

k = mean[Tmin(max),Watch-TWatch]/mean[Tmin(max)GCM-TGCM],

and the resulting bias-corrected maximum (minimum) temperature is  then 
given by:

Tmin(max)BC=k[Tmin(max)GCM-TGCM]+TGCM .

1.2 Precipitation  

For  precipitation  data  we  use  a  multiplicative  correction  to  adjust  the 
monthly mean values in the historical period to the observed climatological 
monthly  mean  values.  This  ensures  that  the  monthly  mean  precipitation 
values are preserved up to a constant multiplicative factor.   The monthly 
means are multiplied by a grid-point and month specific (one for January, one 
for February etc.) constant correction factor (hereafter μ). We thereby ensure 
that the relative change in precipitation as described by the original AOGCM 
data is preserved. 

In  combination  with  the  applied  temperature  correction,  we preserve the 
hydrological sensitivity of the AOGCM (relative change of precipitation per 
degree of  warming).  In comparison to the additive approach used for the 
temperature  correction,  a  multiplicative  approach  was  chosen  for  the 
precipitation data to ensure non-negative precipitation values. 

Snowfall  is  not  directly  bias  corrected,  but  rather the ratio  of  snowfall  to 
rainfall in the original AOGCM data is preserved, based on the bias-corrected 
rainfall data.  

1.3 Other variables

Monthly  values  of  the  other  variables  that  are  also  subject  to  positivity 
constraints  are  corrected  in  a  multiplicative  way  as  described  above  for 
precipitation.  The only exception is wind.



In  the  case  of  wind,  the  magnitude  of  wind  is  corrected  using  the 
multiplicative algorithm.  The individual wind components are then derived 
by preserving the direction of the original AOGCM data.

2. Adjustment of the daily variability

As  described  above,  we  adjust  neither  the  monthly  variability  of  the 
temperature information in absolute terms, nor the monthly variability of the 
other variables in relative terms. However, we do adjust the daily variability 
around the monthly mean values as described below. The method is similar 
to the correction of the daily variability in Haerter et al. (2011).  

2.1 Temperature

The daily variability of the temperature data is simply adjusted to reproduce 
the variability of the observed data.  The data is processed as follows:

1. Subtract the monthly means from both data sets.

2. Multiply the residual  daily variations by a constant month and grid-
point specific factor, thereby matching the variance of the simulations 
to the variance of the observations. 

3. This bias corrected daily variations are afterwards added to the bias 
corrected monthly means provided by the AOGCM. 

2.2 Precipitation

For precipitation we again adopt a multiplicative approach, which adjusts the 
relative variability. The data is processed as follows:

1. Normalize the daily precipitation data from the AOGCM and the Watch 
data set by dividing by their monthly mean values. The daily variability 
of dry months, specified by a certain threshold, is not modified. 

2. After  normalization  of  the  wet  months,  map the  distribution  of  the 
simulated data to the distribution of the observed daily data using a 
transfer function [as introduced by Piani et al. (2010) and  applied to 
the  non-normalized  data  within  Water-MIP].  The  transfer  function 
corrects both the frequency of dry days as well as the distribution of 
the precipitation intensity to the observed statistics. 

3. For the future projections, apply the generated transfer functions to the 
normalized daily precipitation of wet months.  



4. Multiply  the  transfered  data  by  the  bias  corrected  monthly  mean 
values. By ensuring the mean value of the transferred normalized daily 
data is equal to one (by simply dividing by the associated mean value) 
we ensure that the corrected monthly mean values are preserved when 
factoring in the daily variability.        

2.3 Other variables

For the other variables we also use the same multiplicative approach as for 
precipitation. However, in these cases the situation is simplified as it usually 

does not require a treatment of months or days with mean values of zero.  

3. Known Problems

3.1 Extremely high precipitation values

At grid points and within months where the monthly mean precipitation of 
the AOGCM is very low, while the observational data are significantly higher, 
the correction factor can get extremely high. As we apply a multiplicative 
correction based on the ratio between the monthly mean precipitation from 
the Watch data  and the  simulated data,  this  can mean that  we multiply 
singular  high  daily  precipitation  values  by  a  very  high  correction  factor, 
leading to unphysically high values of daily precipitation.

To fix  that  problem we decided  to  limit  the  correction  factor  μ to  10.  In 
addition, the remaining extremely high precipitation values are truncated at 
400  mm/day.   An  example  map of  the  number  of  days  effected  by  this 
truncation over the period 2000-2099 for the HadGEM2-ES model and RCP 
8.5 is shown in Figure 1.

The map of μ in Figure 2 gives a clear indication where differences between 
simulated data and observational data are very high and results should be 
interpreted  with  caution.   We  archive  these  plots  for  each  AOGCM  and 
provide  them  to  you  alongside  the  bias  corrected  data  (in  the  same 
directory).

3.2 Inconsistencies in specific humidity

Saturation specific humidity (SSH) can be calculated from temperature (Tas) 
and pressure (ps). In combination with specific humidity (SH), SSH can be 
used to calculate relative humidity (RH), which takes values between 0 and 



1. The applied bias correction does not guarantee that this basic property is 
preserved. Based on feedback from modeling groups, we have ascertained 
that  our  bias  correction  algorithm  produces  RH values  outside  the  [0,1] 
range. 

We are currently devising a fix for that problem and would greatly appreciate 
your feedback on this issue.  Two possible options are:

1. Calculate  RH based on bias  corrected  Tas,  ps and  SSH,  and simply 
truncate all values of RH greater than 1. 

2. Use Tas and ps to calculate the SSH. Then use the original uncorrected 
RH data to calculate  SH.  In this case  the current  version 1 SH data 
should not be used.  In this  case,  we provide the uncorrected GCM 
interpolated (0.5x0.5 degree)  RH.  SH would then to be calculated by 
the modeling groups that need it. 

Thus,  if  RH,  ps and specific  vapour pressure (SVP) are given the specific 
humidity can be calculated by:

SH = RH*SVP*100*0.622/(ps-RH*SVP*100) .

SVP is a polynomial function of T (Flatau, 1992):

SVP =∑iwiTi ,

where

wi = [6.11176750, 0.443986062, 0.143053301E-01,0.265027242E-03, 
0.302246994E-05, 0.203886313E-07, 0.638780966E-10].

We invite your comments on the best way to proceed.



Figure 1.  Number of days for which precipitation has been truncated at 400 mm/day in  
the period 2000-2099 for the HadGEM2-ES model and the RCP 8.5.

Figure 2.  meanratio for January in the HadGEM2-ES model, truncated to a maximum value of  
10, as per the bias-correction algorithm. The red regions indicate where the bias correction  
algorithm is less effective due to very low precipitation values from the AOGCM.
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