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1 Introduction

In this document we describe and evaluate the bias correction of climate input data that was carried
out in order to facilitate ISIMIP’s contribution to the IPCC’s special report on the impacts of global
warming of 1.5◦C above pre-industrial levels that is due in 2018. The document is structured as follows.
We first describe the observational dataset used for the bias correction (Sec. 2) and outline the bias
correction methods (Sec. 3). We then provide present basic evaluation results and discuss identified
methodological issues (Sec. 4). Finally, we summarise the innovations that distinguish the ISIMIP2b
bias correction from the one carried out in the ISIMIP fast track (Sec. 5).

2 Observational dataset

While WATCH forcing data (WFD; Weedon et al., 2011) were employed for bias correction in the
fast track, ISIMIP2b climate input data were corrected using the newly compiled reference dataset
EWEMBI (E2OBS, WFDEI and ERAI data Merged and Bias-corrected for ISIMIP; Lange, 2016),
which covers the entire globe at 0.5◦ horizontal and daily temporal resolution from 1979 to 2013. Data
sources of EWEMBI are ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH forcing data
methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014), eartH2Observe
forcing data (E2OBS; Dutra, 2015) and NASA/GEWEX Surface Radiation Budget data (SRB; Stack-
house Jr. et al., 2011). The SRB data were used to bias-correct E2OBS shortwave and longwave ra-
diation using a new method that has been developed particularly for this purpose (Lange, 2018), in
order to reduce known deviations of E2OBS radiation statistics from the respective SRB estimates
over tropical land (Dutra, 2015). EWEMBI data sources for the variables that were bias-corrected in
ISIMIP2b are given in Tab. 1.

The main differences between EWEMBI and WFD are that (i) EWEMBI covers the entire globe
and not only land as WFD, (ii) EWEMBI is based on ERA-Interim while WFD is based its predecessor
ERA-40 (Uppala et al., 2005) and (iii) EWEMBI radiation data were bias-corrected using the SRB
primary algorithm data products whereas Weedon et al. (2011) considered a correction of WFD
radiation with the less reliable (Stackhouse Jr., personal communication) SRB quality control data
products unnecessary.

Multi-year monthly mean differences between EWEMBI and WFD hurs, pr, prsn, ps, rlds, rsds,
sfcWind, tas, tasmax and tasmin are shown in Figs. 1–10. Substantial differences exist for hurs, rlds,
rsds, sfcWind, tas, tasmax and tasmin. In particular, average shortwave radiation over central Africa
is more than 50% higher in EWEMBI than in WFD (Fig. 11) and average wind speeds in EWEMBI
exceed those in WFD by more than 50% in many regions of the world (Fig. 12).

3 Bias correction methods

All variables that were bias-corrected for ISIMIP2b are listed in Tab. 1. The bias correction was
performed on the regular 0.5° EWEMBI grid, to which raw CMIP5 GCM data were interpolated
using a first-order conservative remapping scheme (Jones, 1999; we abstained from using any higher
than first-order scheme because those occasionally produce values outside the range of the interpolated
values, such as negative precipitation values).

Temporally, the method works at daily resolution and uses the proleptic Gregorian calendar. Raw
CMIP5 output of GCMs using a 365-day calendar was adjusted by filling leap-day gaps with averages
of the values of Feb 28 and Mar 31 of the respective year. Similarly, for GCMs using a 360-day calendar,
the additionally missing five days were inserted into the raw data after the first 36, 108, 180, 252 and
324 days of each 360-day year and filled with averages of the values of the respective preceding and
following days.

The correction was done based on biases identified by comparing simulated to observed data from
a historical reference period, which was 1979–2013 here and used to be 1960–1999 in the fast track.
We used simulated data from historical CMIP5 runs for 1979–2005 and from RCP8.5 projections for
2006–2013.
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Table 1: Variables bias-corrected for ISIMIP2b and their data sources in the EWEMBI dataset (Lange,
2016). Note that E2OBS data are identical to WFDEI and ERAI data over land and ocean, respectively,
except for precipitation over the ocean, which was bias-corrected using GPCPv2.1 monthly precipi-
tation totals (Balsamo et al., 2015; Dutra, 2015). WFDEI-GPCC means WFDEI with GPCCv5/v6
monthly precipitation totals used for bias correction (Weedon et al., 2014; note that the WFDEI pre-
cipitation products included in E2OBS were those that were bias-corrected with CRU TS3.101/TS3.21
monthly precipitation totals). E2OBS-SRB means E2OBS with SRB daily mean radiation used for
bias correction (Lange, 2018). E2OBS-ERAI means E2OBS everywhere except over Greenland and
Iceland (cf. Weedon et al., 2010, p. 9), where monthly mean diurnal temperature ranges were restored
to those of ERAI using the Sheffield et al. (2006) method. Note that precipitation here means total
precipitation, i.e., rainfall plus snowfall.

Variable Short name Unit Source dataset Source dataset
over land over the ocean

Near-Surface Relative Humidity hurs % E2OBS E2OBS
Near-Surface Specific Humidity huss kg kg−1 E2OBS E2OBS
Precipitation pr kg m−2 s−1 WFDEI-GPCC E2OBS
Snowfall Flux prsn kg m−1 s−1 WFDEI-GPCC E2OBS
Surface Air Pressure ps Pa E2OBS E2OBS
Surface Downwelling Longwave rlds W m−2 E2OBS-SRB E2OBS-SRB
Radiation
Surface Downwelling Shortwave rsds W m−2 E2OBS-SRB E2OBS-SRB
Radiation
Near-Surface Wind Speed sfcWind m s−1 E2OBS E2OBS
Near-Surface Air Temperature tas K E2OBS E2OBS
Daily Maximum Near-Surface Air tasmax K E2OBS-ERAI E2OBS
Temperature
Daily Minimum Near-Surface Air tasmin K E2OBS-ERAI E2OBS
Temperature

The correction was done independently for each variable, grid cell and month to the end of adjusting
the respective distributions to those observed in the reference period if applied in the reference period,
and to climate change versions of these reference distributions if applied outside the reference period.

The variables listed in Tab. 1 are of various natures and this is reflected in the use of different bias
correction methods for different variables. If we abstract away from oversaturation, hurs can only take
values in [0%, 100%] while pr, prsn, ps, rlds, rsds and sfcWind are also non-negative but do not possess
any well-defined upper bounds. The non-negavity of tas can be safely neglected. Special constraints
hold for huss which is a dependent variable once hurs, ps and tas are known, and for tasmin and
tasmax, namely tasmin ≤ tas ≤ tasmax.

The methods used to correct pr, prsn, tas, tasmax and tasmin are identical to those used in the fast
track (Hempel et al., 2013), except that we defined dry days using a modified threshold value of 0.1
mm/day here since this value was used to correct WFDEI dry day frequencies (cf. Sec. 2 and Tab. 1;
Harris et al., 2013; Weedon et al., 2014). Also, in order to prevent the bias correction from creating
unrealistically extreme temperatures, we introduced a maximum value of 3 for the correction factors of
tas−tasmin and tasmax−tas [cf. Hempel et al., 2013, Eq. (25)] and limited tas, tasmin and tasmax to
the range [−90◦C, 60◦C], in line with historical record near-surface temperature observations (WMO;
cf. Sec. 4.1).

Known deficiencies of the method used to correct rlds and sfcWind in the fast track were that
it produced (i) too low annual global minimum values (cf. Sec. 4.1) and (ii) discontinuous daily
climatologies as described by Rust et al. (2015) for the WATCH forcing datasets. Problem (i) was
solved by setting δP̂GCM

min = 0 in the transfer function used for the correction of daily variability
around monthly means (Hempel et al., 2013, Eq. (14)). Problem (ii) was solved by equipping the

2



method with daily (instead of monthly) climatologies using linearly interpolated monthly mean values
as in the tas correction method (Hempel et al., 2013, Eqs. (16–20)).

Bias-corrected ps was obtained from CMIP5 output of sea level pressure (psl) in three steps. First,
EWEMBI ps was reduced to EWEMBI psl using EWEMBI tas, WFDEI and ERAI surface elevation
over land except Antarctica and the rest of the earth’s surface, respectively, and

psl = ps exp
( g z

R tas

)
, (1)

where z is surface elevation, g is gravity and R is the specific gas constant of dry air. Simulated psl was
then corrected using EWEMBI psl and the tas correction method described by Hempel et al. (2013).
Using the tas correction method for psl is fine in terms of avoiding negative bias-corrected values
– which was the rationale behind utilising the precipitation method for pressure corrections in the
fast track – since psl values are generally well above zero, and it is advantageous because it produces
continuous daily climatologies (cf. previous paragraph). Finally, the bias-corrected psl was transformed
to a bias-corrected ps using (1) with WFDEI and ERAI surface elevation and bias-corrected tas.

Note that in the fast track, ps was corrected directly after it had been retrieved from raw CMIP5
psl and tas using a relationship similar to (1). We decided to change that since the reduction of surface
to sea level pressure is done differently in every GCM, so in fact also the retrieval of ps should be done
differently for every GCM, but these retrievals are impossible in cases where the relationships used for
the reduction from ps to psl are more sophisticated than (1) and require the knowledge of variables
that have not been stored in the CMIP5 archive. The new approach circumvents this problem.

A new and approximately trend-preserving bias correction method was developed for rsds because
the old method produced unrealistically high rsds values too frequently. The new method fits beta
distributions to the observed and simulated daily rsds data and then transforms the simulated data
based on these fitted distributions via quantile mapping as described by Lange (2018). Reflecting the
physical limits of rsds, the lower bounds of the beta distributions were set to zero and their upper
bounds were estimated by rescaled climatologies of downwelling shortwave radiation at the top of the
atmosphere. Details of the distribution fitting are given in Lange (2018, method BCsda1). Approximate
trend preservation was achieved as follows. Let F to

ref , F
from
ref and F from

other denote the beta distributions
fitted to rsds observed during the reference period, simulated during the reference period and simulated
during any other period, respectively. Then the target beta distribution used for quantile mapping
of simulated rsds during that other period, F to

other, was defined by transferring differences between
F from
ref and F from

other to differences between F to
ref and F to

other. Specifically, let x, m and v denote the upper
bound, the relative mean value (m = µ/x, where µ is the mean value) and the relative variance
(v = σ2/(µ(x − µ)), where µ and σ are mean value and standard deviation, respectively) of a beta
distribution. Then 0 ≤ m ≤ 1 and 0 ≤ v ≤ 1 (Wilks, 1995), and we defined the upper bound of F to

other

by

xtoother =

{
0 if xfromref = 0,

xtoref x
from
other/x

from
ref otherwise,

(2)

its relative mean value by

mto
other =


mto

ref if mfrom
other = mfrom

ref ,

mto
ref m

from
other/m

from
ref if mfrom

other < mfrom
ref ,

1− (1−mto
ref)(1−mfrom

other)/(1−mfrom
ref ) if mfrom

other > mfrom
ref ,

(3)

and its relative variance, vtoother, in the same way as the relative mean value, i.e., using Eq. (3) with m
replaced by v.

Using beta distributions with fixed lower and upper bounds of 0% and 100%, respectively, the new
rsds bias correction method was also applied to hurs, which had not been corrected in the fast track.
A bias-corrected huss consistent with bias-corrected hurs, ps and tas was then calculated using the
equations of Buck (1981), as described by Weedon et al. (2010).

The most important feature of the fast-track methods is that they preserve differences between
multi-year monthly mean values over any two periods in absolute terms for temperature and in relative

3



terms for pr, psl, rlds, sfcWind, tas− tasmin and tasmax− tas. Since

prsncorrected

prcorrected
=

prsnraw

prraw
(4)

is used at the daily level to correct prsn, also relative trends in multi-year monthly mean prsn are
approximately preserved.

An important consequence of the trend preservation is that corrected time series from different
GCMs diverge as they depart from the reference period going both forward and backward in time.
For global mean values this is illustrated in Fig. 13.

4 Evaluation

The ISIMIP2b bias correction methods were applied to CMIP5 output of IPSL-CM5A-LR, GFDL-
ESM2M, HadGEM2-ES and MIROC5. In the fast track, ISIMIP provided bias-corrected CMIP5 out-
put of IPSL-CM5A-LR, GFDL-ESM2M, HadGEM2-ES, MIROC-ESM-CHEM and NorESM1-M. The
GCM selection for ISIMIP2b was mainly motivated by data availability. Nevertheless, compared to
the fast track, the new set of GCMs better represents the CMIP5 GCM ensemble in terms of both
horizontal model resolution and equilibrium climate sensitivity (Fig. 29). In this section we provide a
basic evaluation of the bias-corrected data from each of the four models.

We begin with comparisons of annual global mean, minimum and maximum values before and after
the correction (Sec. 4.1). We then briefly discuss how our bias correction methods influence statistical
dependencies between variables, in space and in time (Sec. 4.2), and how large correction factors can
inflate extreme precipitation events (Sec. 4.3). We then look at reference-period biases before and
after the correction for a range of statistics (Sec. 4.4) and check how well trends in these statistics are
preserved by the bias correction (Sec. 4.5). We conclude with a discussion of identified methodological
issues (Sec. 4.6).

Note that figures from this section that have been produced in the same way for every GCM are
distributed to one supplementary document per GCM using identical figure numbers for the analogous
figures in the different supplementary documents.

Note also that the NetCDF files containing the bias-corrected data have been checked for proper
time, latitude and longitude axes. Moreover, we made sure that they do not contain any infs, nans,
missing values, hurs values outside [0%, 100%] or negative huss, pr, prsn, ps, psl, rlds, rsds or sfcWind
values.

4.1 Annual global mean, minimum and maximum values

Time series of annual global mean values of all variables before and after the correction are shown in
Fig. 13 for all GCMs and CMIP5 experiments. With the exception of prsn, the bias correction makes
the time series from different GCMs coincide during the reference period. The preservation of snowfall-
to-precipitation ratios at the daily level [Eq. (4)] apparently prevents the correction of long-term mean
snowfall. Another observation is that for some variables, most notably for hurs, the EWEMBI data
exhibit considerable trends over the reference period which are not present in the uncorrected GCM
time series. By design, this discrepancy is preserved by the bias correction.

Similar time series of annual global minimum and maximum values are shown in Figs. 14 and 15.
For all GCMs, minima of corrected hurs and sfcWind are persistently too close to zero. For GFDL-
ESM2M, minima of corrected hurs and (consequently) huss are always zero due to negative hurs values
in the raw GFDL-ESM2M data that were mapped to zero by the bias correction. For a discussion
of the particularly low MIROC5 sfcWind minima see Sec. 4.4.1. For IPSL-CM5A-LR and MIROC5,
annual global minima of corrected daily mean and minimum temperatures sometimes touch the lower
limit of -90°C. Otherwise the minima are well corrected.

Annual global maxima of corrected huss are too high for all GCMs. The accordance of annual
global maxima of corrected hurs, ps and tas with corresponding EWEMBI values suggests that this
overestimation is due to misrepresented statistical dependencies between these variables. The bias
correction caps precipitation at 400 mm/day and temperature at 60°C. Figure 15 shows that these
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upper limits are reached rather frequently. Maps of corresponding limit exceedance frequencies during
the reference period (Figs. S2 and S3) show that most of the limit precipitation events occur in the
intertropical convergence zone and in the Indian summer monsoon region (further occurrences are
scattered across tropical and subtropical latitudes), and that the limit temperature events occur over
Australia, Morocco, Pakistan and Turkmenistan, depending on the GCM. Otherwise the maxima are
well corrected.

4.2 Statistical dependencies between variables, in space and in time

As alluded to above, the ISIMIP2b bias correction methods adjust distributions independently for
each variable, grid cell and month. Statistical dependencies between variables, in space and in time
are therefore not corrected.

As an example for inter-variable dependencies, Pearson correlations between daily mean temper-
ature tas and diurnal temperature range dtr = tasmax − tasmin from EWEMBI, raw and corrected
IPSL-CM5A-LR data are shown in Figs. 16–18. The statistical dependencies between tas and dtr are
similarly poorly represented before and after bias correction.

As an example for spatial dependencies, the second empirical orthogonal functions of sea level
pressure from EWEMBI, raw and corrected IPSL-CM5A-LR data are shown in Figs. 19–21. Again,
the bias correction hardly alters the misrepresented spatial covariances.

As an example for temporal dependencies, autocorrelations of binarised precipitation time series
(pr 7→ 1 if pr ≥ 0.1 mm/day else 0) from EWEMBI, raw and corrected IPSL-CM5A-LR data are
shown in Figs. 19–21. In this case, the bias correction yields minor improvements since it corrects wet
day frequencies (cf. Sec. 4.4.4) but major deviations in the temporal structure of precipitation time
series persist.

4.3 Large correction factors and extreme precipitation events

Hagen Koch from the regional water sector brought to our attention the following issue that he came
across when he prepared hydrological impact assessments for the São Francisco river basin in the semi-
arid Northeast of Brazil. Fed with bias-corrected fast-track climate input data based on NorESM1-M
future climate projections under RCP8.5 his hydrological model SWIM simulated discharge with much
too high interannual variability and produced one particularly extreme flood event in March 2031 that
we want to focus on here.

EWEMBI-to-NorESM1-M ratios of 1979–2013 March mean precipitation over Northeast Brazil
are shown in Fig. 25. Values greater than 4 occur over large parts of the region. In order to reduce
this underestimation of monthly mean rainfall the bias correction method developed by Hempel et al.
(2013) rescales simulated monthly precipitation values with these ratios as long as the ratios do not
exceed a cap value (or fall below the cap value’s inverse in the case of overestimation), which was set to
10 in the fast track, and as long as the resulting daily precipitation values do not exceed a maximum
value of 400 mm/day.

It now happened that under RCP8.5 NorESM1-M simulated some days with rather extreme precip-
itation in March 2031. Time series of raw and bias-corrected regional mean and maximum precipitation
falling in this month are shown in Fig. 26. Rainfall amounts on 7 March 2031 correspond to a two-
sigma event relative to the historical EWEMBI distribution and to a four- to five-sigma event relative
to the historical NorESM1-M distribution (Fig. 27).

The Hempel et al. (2013) bias correction method tries to adjust these sigma levels at the grid
scale, similar to how a simple quantile mapping would do, i.e., high-sigma events relative to the his-
torical NorESM1-M distribution are mapped to high-sigma events relative to the historical EWEMBI
distribution. The present example shows that this can turn moderately extreme into very extreme
precipitation events if correction factors are large.

We investigated if a reduction of the cap value for the correction factors can alleviate the problem.
Results for cap values ranging from 2 to 6 are shown in Figs. 26 and 27. Apparently, a considerable
improvement requires a reduction of the cap value to 4 or lower. But this comes at the cost of increased
biases in precipitation climatologies as shown for IPSL-CM5A-LR in Fig. 28. It was therefore decided
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not to change the cap value for ISIMIP2b. Future method development shall yield a more fundamental
solution of the problem.

In the meantime, beware of extreme precipitation events in regions and months where and when the
bias correction method worked with large correction factors. Monthly maps of precipitation correction
factors for the different GCMs are shown in Fig. S1.

4.4 Reference period statistics

4.4.1 Multi-year monthly mean values

Maps of biases of multi-year monthly mean values before and after bias correction are shown in
Figs. S4–S25. The bias correction does a good job at adjusting this most basic statistic with the
following exceptions. For IPSL-CM5A-LR, some overestimations of relative humidity are introduced
over the tropical oceans. Some underestimations of precipitation remain over tropical South America
for IPSL-CM5A-LR and GFDL-ESM2M and over India for IPSL-CM5A-LR and HadGEM2-ES. These
underestimations coincide with capped correction factors (cf. Fig. S1). Snowfall flux biases are well
reduced over land, but over the mid-latitude oceans and over the Southern Ocean the bias correction
is not able to reduce biases for any of the four GCMs.

A special case are MIROC5 near-surface wind speeds over tropical rainforests, which are underes-
timated before and after the correction, most visibly over South America. The reason is that sfcWind
was calculated inside the rainforest canopy in MIROC5 (Tatsuo Suzuki, personal communication) and
was therefore one to two orders of magnitude too weak in the raw data. Since we capped sfcWind
correction factors at 10 (just like pr correction factors) these strong underestimations were not fully
corrected. We abstained from increasing the cap value because that could have resulted in unrealis-
tically strong winds outside the reference period (cf. Sec. 4.5.1) as the spatial distribution of tropical
rainforests in MIROC5 changes during the RCP runs, in line with projected land-use changes (Tatsuo
Suzuki, personal communication).

4.4.2 Multi-year monthly standard deviations

Maps of biases of multi-year monthly standard deviations of daily data before and after bias correction
are shown in Figs. S26–S47. For hurs, underestimations of standard deviations are well corrected
while some overestimations persist or are created in particular over the Arctic Ocean. Generally,
biases of huss standard deviations are well reduced at high latitudes whereas at tropical latitudes
and in particular over tropical oceans, huss standard deviations are mostly overestimated after the
correction.

For pr, standard deviation biases are generally well reduced by the bias correction. Strong biases
remain over the subtropical dry regions. For prsn, standard deviation biases are mostly well reduced
over land. The correction works less well over mid-latitude oceans and over the Southern Ocean for
GFDL-ESM2M and HadGEM2-ES as well as over Europe and over the eastern US for IPSL-CM5A-LR,
GFDL-ESM2M and MIROC5.

For psl, standard deviation biases are well corrected outside the tropics except for IPSL-CM5A-LR
over Antarctica. Considerable biases remain over tropical regions where the interannual variability of
monthly means is large relative to the intramonthly variability of daily means (cf. Secs. 4.4.5 and 4.6).
This problem is most severe for GFDL-ESM2M.

For rlds and rsds, standard deviation biases are generally well corrected. Remaining biases in rlds
standard deviations are found over high latitudes in winter and in the intertropical convergence zone.
For rsds, some slight underestimations remain or are created over tropical and subtropical land, in
particular for GFDL-ESM2M.

For sfcWind, standard deviation biases are well corrected everywhere for HadGEM2-ES while some
overestimations persist over tropical oceans for IPSL-CM5A-LR, GFDL-ESM2M and MIROC5 and
underestimations remain over tropical rainforests for MIROC5 (cf. discussion in Sec. 4.4.1).

For tas, most underestimations of standard deviations are well corrected. Substantial overesti-
mations persist over tropical oceans for IPSL-CM5A-LR, GFDL-ESM2M and MIROC5, over trop-
ical South America for GFDL-ESM2M and MIROC5, over subtropical oceans for IPSL-CM5A-LR
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and HadGEM2-ES, over the Arctic Ocean for IPSL-CM5A-LR and over the Southern Ocean for
HadGEM2-ES. These biases persist because – as for psl – the current tas correction method only
adjusts the intramonthly variability of daily means and leaves the interannual variabilities of monthly
means unchanged (cf. Secs. 4.4.5 and 4.6).

For tasmax, standard deviation biases are generally reduced. Remaining biases include overes-
timations over tropical oceans for IPSL-CM5A-LR, GFDL-ESM2M and MIROC5, over subtropical
oceans for IPSL-CM5A-LR and HadGEM2-ES, over the Arctic Ocean for IPSL-CM5A-LR and over
the Southern Ocean for HadGEM2-ES as well es underestimations over tropical land for IPSL-CM5A-
LR, GFDL-ESM2M and HadGEM2-ES. For tasmin, the bias correction changes standard deviation
biases in a similar manner as for tasmax, but with smaller remaining biases. In most cases, the bulk
of the remaining variability biases of tasmax and tasmin are inherited from tas.

4.4.3 Multi-year monthly 5th and 95th percentiles

Maps of biases of multi-year monthly 5th percentiles of daily data before and after bias correction are
shown in Figs. S48–S69. The 5th percentiles are generally well corrected with the following exceptions.
For GFDL-ESM2M and IPSL-CM5A-LR, the bias correction introduced some underestimations of 5th
percentiles of huss over tropical oceans, and for IPSL-CM5A-LR, the bias correction was not able to
fully correct underestimations of 5th percentiles of rlds over the Arctic Ocean.

Maps of biases of multi-year monthly 95th percentiles of daily data before and after bias correction
are shown in Figs. S70–S91. The 95th percentiles are generally well corrected with the following
exceptions. For hurs, some minor biases remain at high latitudes for IPSL-CM5A-LR. For all GCMs,
some overestimations of 95th percentiles of huss are introduced over the tropics and subtropics. Over
the tropics, the 95th percentiles of pr were not fully corrected or changed sign, and for IPSL-CM5A-
LR and GFDL-ESM2M, considerable underestimations remain over tropical South America in some
months. Generally, biases in 95th percentiles of prsn only slightly improve; particularly strong biases
persist over the oceans. For psl, biases in 95th percentiles were not fully or overcorrected at high
latitudes. For rlds, some biases in 95th percentiles remain over high latitudes and some overestimations
were introduced over the Arctic Ocean. For IPSL-CM5A-LR and MIROC5 this also applies to tas and
tasmax. For GFDL-ESM2M, the bias correction introduced some underestimations of 95th percentiles
of rsds over land. For MIROC5, underestimations of 95th percentiles of sfcWind remain over tropical
rainforests.

4.4.4 Multi-year monthly mean number of wet days

The precipitation bias correction method (Hempel et al., 2013) adjusts the distribution of precipitation
amounts on wet days as well as the multi-year monthly mean number of wet days. Maps of biases in
these wet day frequencies before and after bias correction are shown in Figs. S92 and S93, respectively.
The widespread overestimations of wet day frequencies were generally well corrected. For IPSL-CM5A-
LR and GFDL-ESM2M, the more challenging correction of too low wet day frequencies was not
successful over tropical South America in its dry season.

4.4.5 Interannual variability of monthly mean values

The interannual variability of monthly mean values is not explicitly corrected by any of the ISIMIP2b
bias correction methods. Nevertheless, the bias correction alters these variabilities and in this section
we want to check if it does so for the better or worse. Maps of biases of standard deviations of monthly
mean values before and after bias correction are shown in Figs. S94–S115. The bias correction reduces
the overall magnitude of the biases for hurs, rsds, pr and prsn while no such improvements are found
for huss, psl, rlds, tas, tasmax and tasmin. For sfcWind, the bias correction increases the overall
magnitude of the biases for IPSL-CM5A-LR, decreases it for MIROC5 and does not changed it much
for GFDL-ESM2M and HadGEM2-ES. In some cases, the bias correction changes the sign of the
variability bias.
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4.5 Preservation of trends

4.5.1 Multi-year monthly mean values

All ISIMIP2b bias correction methods were designed to preserve trends in multi-year monthly mean
values – absolute trends for psl and tas, relative trends for pr, psl, rlds, sfcWind and the diurnal
temperature range, and trends within boundaries for hurs and rsds. In this section we want to check
if the methods are successful at trend preservation (Figs. S116–S137).

The method used to correct hurs and rsds preserves trend directions and attempts to also preserve
trend magnitudes as far as that is possible given the upper and lower bounds of these variables. We
find high spatial correlations between trends before and after bias correction even though changes of
trend magnitude can be substantial for both variables.

For some GCMs, trend changes are also considerable for huss and prsn. Otherwise, magnitudes
and spacial patterns of trends in multi-year monthly mean values are well preserved.

4.5.2 Multi-year monthly standard deviations

Maps of relative trends in multi-year monthly standard deviations before and after bias correction
are shown in Figs. S138–S159. The ISIMIP2b bias correction methods were designed to also preserve
these trends in some way or another. The results show that the direction of standard deviation trends
was generally well preserved. Larger changes in spatial trend patterns are found for hurs and huss (in
particular for IPSL-CM5A-LR in boreal summer), prsn and rsds.

4.5.3 Multi-year monthly 5th and 95th percentiles

Since the ISIMIP2b bias correction methods were designed to preserve trends in multi-year monthly
mean values and standard deviations, they can also be expected to preserve trends in multi-year
monthly 5th percentiles to some extent. Maps of such trends before and after bias correction are
shown in Figs. S160–S181. Generally, spatial trend patterns are well preserved. Major changes are
only found for hurs, huss, rsds and particularly pr, whose spatial trend patterns before and after bias
correction are not at all correlated for IPSL-CM5A-LR.

Bias correction-induced changes of trends in multi-year monthly 95th percentiles (Figs. S182–S203)
are similar to the 5th percentile ones.

4.5.4 Multi-year monthly mean number of wet days

Spatial correlations between trends in multi-year monthly mean numbers of wet days before and
after bias correction (Figs. S204 and S205) are typically greater than 0.7 but can go down to 0.64
in individual months. The larger changes in trend magnitudes associated with these low pattern
correlations predominently occur over the ocean.

4.6 Discussion of identified methodological issues

4.6.1 General issues

The methods used here to correct pr, psl, rlds, sfcWind and tas adjust the variability of daily val-
ues about the respective monthly mean but leave the interannual variability of the monthly means
unadjusted. Consequently, the variability of daily values about multi-year monthly means is not well
corrected where the interannual variability of monthly means is large relative to the intramonthly vari-
ability of daily means. This is particularly the case at tropical latitudes. We need correction methods
that also adjust the interannual variability of monthly means to overcome this problem.

We found too low minimum and/or too high maximum values in bias-corrected hurs and (con-
sequently) huss, rlds, sfcWind, tas, tasmax and tasmin values. The use of non-parametric instead of
parametric bias correction methods (such as empirical quantile mapping) might help to mitigate this
issues.
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The ISIMIP2b bias correction methods do not adjust statistical dependencies between variables.
We think that a considerable fraction of the remaining biases in huss maximum values and standard
deviations are due to hurs, ps and tas being corrected univariately. Future ISIMIP phases should apply
multivariate bias correction methods.

4.6.2 Variable-specific issues

In some cases, the hurs correction method considerably changed trends in multi-year monthly standard
deviations. We found that these changes are reduced if empirical instead of parametric cumulative
distribution functions (CDFs) are employed for the description of simulated hurs distributions. We
nevertheless used the parametric CDFs to reduce the risk of overfitting.

We found that the method used here to correct pr (i) is not always successful at enhancing under-
estimated wet day frequencies, (ii) sometimes completely fails to preserve trends in extreme percentiles
and (iii) potentially amplifies out-of-sample extreme events to unrealistic levels where large correction
factors are needed to adjust precipitation climatologies. These problems need to be tackled by future
correction method development.

The method used here to bias-correct prsn was shown to perform poorly where prsn/pr ratios
are neither close to 0 nor close to 1. In the future, the distribution of daily prsn/pr ratios should be
corrected instead of retained.

Finally, we found considerable remaining variability biases and too extreme global annual maximum
and minimum values in bias-corrected tasmax and tasmin data, respectively. In the future, the simple
rescaling method used here to correct climatological mean values of tas − tasmin and tasmax − tas
should be replaced by a method that corrects the distributions of these quantities.

5 Comparison to ISIMIP fast track

While in the fast track, WATCH forcing data (WFD) were employed for bias correction, the ISIMIP2b
climate input data were corrected using the newly compiled observational dataset EWEMBI, which
is based on ERA-Interim (WFD is based on ERA-40), covers land and ocean (WFD covers land only)
and features bias-corrected radiation data based on SRB observations (WFD does not). Multi-year
monthly mean differences between WFD and EWEMBI are substantial for humidity, radiation, wind
speed and temperature. Very similar differences will be found between bias-corrected climate input
data from the fast track and ISIMIP2b.

The reference period used to identify the biases to be corrected was 1979–2013 here and used to be
1960–1999 in the fast track. Therefore, bias-corrected climate time series from different GCMs diverge
from a focal point in time that is about 15 years later in ISIMIP2b than in the fast track. Please
note that this leads to a possibly ostensible reduction of uncertainties in future climate projections
(cf. Hawkins and Sutton, 2016, Fig. SB1).

We here used a first-order conservative remapping scheme to interpolate raw CMIP5 output from
the native grid of each GCM to the 0.5° EWEMBI grid while this interpolation was done bilinearly in
the fast track. The new approach is advantageous as it conserves spatial averages.

For all variables except snowfall, the ISIMIP2b bias correction methods differ from those used
in the fast track. Some threshold and cap values were modified and introduced in the correction
methods for precipitation and the three temperature variables, respectively, to the end of keeping
the bias-corrected values within realistic limits. In order to circumvent the problem of retrieving the
original CMIP5 surface pressure data, pressure was corrected at sea level here instead of at the surface
as in the fast track. We replaced monthly with daily climatologies in the correction methods for
pressure, longwave radiation and wind speed in order to avoid discontinuities in bias-corrected daily
climatologies of these variables. Wholly new methods were developed and applied for the correction
of relative humidity and shortwave radiation – the only two variables that have both lower and upper
bounds. In the fast track, relative humidity was not corrected at all and shortwave radiation was
corrected with a method that too frequently produced unrealistically high values.

The ISIMIP2b bias correction methods were applied to CMIP5 output of IPSL-CM5A-LR, GFDL-
ESM2M, MIROC5 and HadGEM2-ES. On average, the new GCMs feature a lower equilibrium climate
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sensitivity and an atmospheric model with higher horizontal resolution than those employed in the
fast track.

The bias-corrected ISIMIP2b climate input data cover pre-industrial, historical and future climate
conditions until 2300 over land and ocean. The new data thus provide greater temporal and spatial
coverage than the corresponding fast track data.
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Figure 1: 1979–1999 monthly mean differences between EWEMBI and WFD hurs (%).
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Figure 2: 1979–1999 monthly mean differences between EWEMBI and WFD pr (mm/day).
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Figure 3: 1979–1999 monthly mean differences between EWEMBI and WFD prsn (mm/day).
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Figure 4: 1979–1999 monthly mean differences between EWEMBI and WFD ps (hPa).
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Figure 5: 1979–1999 monthly mean differences between EWEMBI and WFD rlds (W/m2).
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Figure 6: 1979–1999 monthly mean differences between EWEMBI and WFD rsds (W/m2).
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Figure 7: 1979–1999 monthly mean differences between EWEMBI and WFD sfcWind (m/s).

jan feb mar

apr may jun

jul aug sep

oct nov dec

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 8: 1979–1999 monthly mean differences between EWEMBI and WFD tas (◦C).
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Figure 9: 1979–1999 monthly mean differences between EWEMBI and WFD tasmax (◦C).
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Figure 10: 1979–1999 monthly mean differences between EWEMBI and WFD tasmin (◦C).
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Figure 11: 1979–1999 monthly mean relative differences between EWEMBI and WFD rsds (%).
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Figure 12: 1979–1999 monthly mean relative differences between EWEMBI and WFD sfcWind (%).
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Figure 13: Uncorrected (left) and corrected (right) time series of annual global mean hurs, huss, pr,
prsn, ps, psl, rlds, rsds, sfcWind, tas, tasmax and tasmin (from top to bottom) for IPSL-CM5A-
LR (red), GFDL-ESM2M (dark blue), MIROC5 (light blue), HadGEM2-ES (orange) and EWEMBI
(black). The grey vertical lines indicate the transitions from pre-industrial to historical to RCP to
extended RCP periods at the end of 1860, 2005 and 2099, respectively. Pre-industrial, historical and
RCP2.6 time series are shown with 100% opacity, RCP6.0 with 40% opacity and the post-1860 con-
tinuation of pre-industrial control with 16% opacity.
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Figure 14: Same as Fig. 13 but for annual global minimum values.
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Figure 15: Same as Fig. 13 but for annual global maximum values.
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Figure 16: Multi-year (1979–2013) monthly Pearson correlations between daily tas and tasmax−tasmin
from EWEMBI data.
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Figure 17: Multi-year (1979–2013) monthly Pearson correlations between daily tas and tasmax−tasmin
from raw IPSL-CM5A-LR data.
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Figure 18: Multi-year (1979–2013) monthly Pearson correlations between daily tas and tasmax−tasmin
from corrected IPSL-CM5A-LR data.
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Figure 19: Multi-year (1979–2013) monthly 2nd empirical orthogonal functions of daily psl from
EWEMBI data.
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Figure 20: Multi-year (1979–2013) monthly 2nd empirical orthogonal functions of daily psl from raw
IPSL-CM5A-LR data.
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Figure 21: Multi-year (1979–2013) monthly 2nd empirical orthogonal functions of daily psl from cor-
rected IPSL-CM5A-LR data.

24



jan feb mar

apr may jun

jul aug sep

oct nov dec

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 22: Multi-year (1979–2013) monthly autocorrelations of binary wet-dry sequences (pr 7→ 1 if
pr ≥ 0.1 mm/day else 0) from EWEMBI data.
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Figure 23: Multi-year (1979–2013) monthly autocorrelations of binary wet-dry sequences (pr 7→ 1 if
pr ≥ 0.1 mm/day else 0) from raw IPSL-CM5A-LR data.
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Figure 24: Multi-year (1979–2013) monthly autocorrelations of binary wet-dry sequences (pr 7→ 1 if
pr ≥ 0.1 mm/day else 0) from corrected IPSL-CM5A-LR data.
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Figure 25: Study region (latitude-longitude box) over Northeast Brazil (coastline in black). Colors
show correction factors for NorESM1-M March mean precipitation. Red contours indicate EWEMBI
1979–2013 March mean precipitation with dotted/solid/dashed lines at 2/4/6 mm/day, respectively.
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Figure 26: Time series of regional mean (left) and maximum (right) precipitation as simulated by
NorESM1-M for March 2031 under RCP8.5 (grey) and as bias-corrected with different correction
factor cap values (colors, see legend). Spatial mean and maximum values were calculated over the
region that is outlined in Fig. 25.
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Figure 27: Empirical cumulative distribution functions (eCDFs) of 1979–2013 regional mean (left) and
maximum (right) daily precipitation in March for EWEMBI (solid orange) and NorESM1-M (solid
black). Dashed lines show fits of these eCDFs with log-normal CDFs. Uncorrected (grey) and bias-
corrected (color coding as in Fig. 26) NorESM1-M regional mean and maximum precipitation on 7
March 2031 under RCP8.5 are indicated with vertical solid lines. The numbers next to these lines in
the legend are the sigma levels of the corresponding events relative to the fitted 1979–2013 EWEMBI
(first number) and NorESM1-M (second number) distributions. Spatial mean and maximum values
were calculated over the region that is outlined in Fig. 25.
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Figure 28: Changes in 1979–2013 monthly mean precipitation biases after a reduction of the correction
factor cap value from 10 to 4 for IPSL-CM5A-LR. Colors show increases of biases in mm/day. Shading
indicates areas where biases more than double.
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Figure 29: Horizontal resolution of atmospheric model versus equilibrium climate sensitivity (from
Sherwood et al. 2014) of various CMIP5 GCMs with ISIMIP2b GCMs in orange and ISIMIP fast
track GCMs in red (GCMs included in both selections are orange and red). Note that MIROC-
ESM(-CHEM) means that the corresponding point in the plot shows the horizontal resolution of the
atmospheric model of MIROC-ESM-CHEM and the equilibrium climate sensitivity of MIROC-ESM
which is very similar to that of MIROC-ESM-CHEM (Shingo Watanabe, personal communication).
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