ISIMIP2b Simulation Protocol

Published on 18 December 2017

The simulation protocol describes the simulation scenarios, input data sets and output variables necessary to participate in the ISIMIP2b simulation round. The scientific rationale and more detailed information about the pre-processing of input data can be found in the accompanying description paper Frieler et al. Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-229, in review, 2016.

Contents

1	Scer	nario design	4
2	Inpu	ıt data	6
	2.1	Climate input data	6
	2.2	Land-use patterns	8
	2.3	Sea-level rise patterns	13
	2.4	Population patterns and economic output (Gross Domestic Product, GDP)	15
	2.5	Other human influences	16
	2.6	Focus Regions	19
	2.7	Lake specifications	20
3	Con	ventions for File Names and Formats	23
	3.1	General Notes	23
	3.1.	1 File names	23
4	Sect	or-specific implementation of scenario design	25
5	Wat	er (hydrological models)	26
	5.1	Scenarios	26
	5.2	Global and regional hydrological models	28
	5.2.	1 Output data	28
	3 4 5	2 Inpu 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 Con 3.1 3.1. 4 Sect 5 Wat 5.1 5.2	2 Input data 2.1 Climate input data 2.2 Land-use patterns 2.3 Sea-level rise patterns 2.4 Population patterns and economic output (Gross Domestic Product, GDP) 2.5 Other human influences. 2.6 Focus Regions. 2.7 Lake specifications. 3 Conventions for File Names and Formats 3.1 General Notes. 3.1.1 File names. 4 Sector-specific implementation of scenario design. 5 Water (hydrological models). 5.1 Scenarios. 5.2 Global and regional hydrological models.

	6 Lak	kes	34
	6.1	Scenarios	35
	6.1	l.1 Output data	37
	7 Bio	omes	41
5	7.1	Scenarios	41
	7.2	Output data	44
	8 Reg	gional forests	49
	8.1	Scenarios	50
	8.2	Output data	57
10	9 Per	rmafrost	62
	9.1	Scenarios	62
	9.2	Output data	64
	10	Global crop simulations	67
	10.1	Scenarios	67
15	10.2	Output data	69
	11 E	Energy	72
	11.1	Scenarios	72
	11.2	Output data	74
	12 H	Health (Temperature-related mortality)	76
20	12.1	11.1 Scenarios	76
	12.2	Output data	79
	13 (Coastal Infrastructure	80
	13.1	Scenarios	80
	13.2	Output data	82
25	14 F	Fisheries and Marine Ecosystems	83
	1/1 1	Scenarios	83

		14.1.1	Output data	84
	15	Teri	restrial biodiversity	86
	15	5.1 S	cenarios	86
	15	5.2 C	Output data	87
5	16	_	erences	

1 Scenario design

The simulation scenarios are divided into three groups, depicted in Figure 1 and Figure 2, directed at addressing distinct scientific questions:

- Quantification of pure climate-change effects of the historical warming compared to pre-industrial reference levels (Group 1).
- Future impact projections accounting for low (RCP2.6) and high (RCP6.0) greenhouse gas emissions assuming present day socio-economic conditions (Group 2).
- Future impact projections accounting for low (RCP2.6) and high (RCP6.0) greenhouse gas emissions assuming dynamic future socio-economic conditions (Group 3).

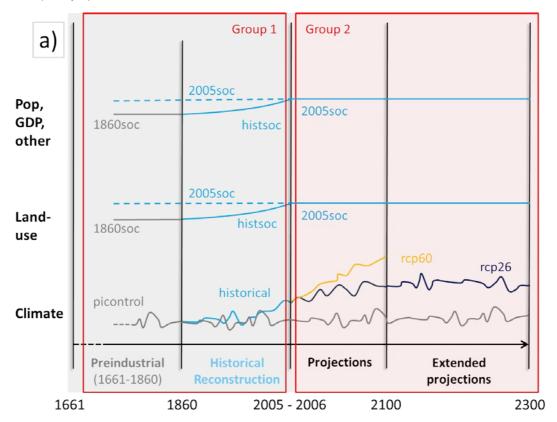
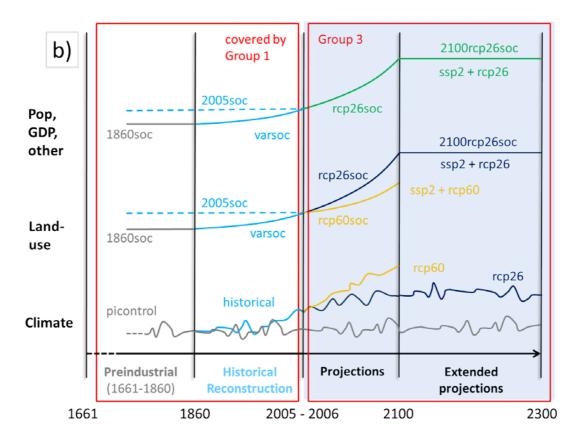



Figure 1 Schematic representation of the scenario design for ISIMIP2b. "Land use". "Other" includes other non-climatic anthropogenic forcing factors and management, such as irrigation, fertilizer input, selection of crop varieties, flood protection levels, dams and reservoirs, water abstraction for human use, fishing effort, atmospheric nitrogen deposition, etc.. Panel a) shows the Group 1 and Group 2 runs. Group 1 consists of model runs to separate the pure effect of the historical climate change from other human influences. Models that cannot account for changes in a particular forcing factor are asked to hold that forcing factor at 2005 levels (2005soc, dashed lines). Group 2 consists of model runs to estimate the pure effect of the future climate change assuming fixed year 2005 levels of population, economic development, land use and management (2005soc).

Figure 2 Schematic representation of the scenario design for **Group 3** runs. Group 3 consists of model runs to quantify the effects of the land use changes, and changes in population, GDP, and management from 2005 onwards associated with RCP6.0 (no mitigation scenario under SSP2) and RCP2.6 (strong mitigation scenario under SSP2). Forcing factors for which no future scenarios exist (e.g. dams/reservoirs) are held constant after 2005.

2 Input data

5

10

15

- Information about how to access ISIMIP Input Data can be found here: www.isimip.org/gettingstarted/downloading-input-data
- A full list of ISIMIP input-data sets can be found here:
 www.isimip.org/gettingstarted/#input-data-bias-correction

2.1 Climate input data

- Bias-corrected to the EWEMBI data set at daily temporal and 0.5° horizontal resolution using updated versions of Fast-Track methods (see bias-correction Fact Sheet at www.isimip.org for methods description and further references).
- Daily time step, 0.5° horizontal resolution
- Pre-industrial (1661-1860), historical (1861-2005) and future (RCP2.6 and RCP6.0) conditions provided based on CMIP5 output of GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5. Output from two GCMs (GFDL-ESM2M and IPSL-CM5A-LR) includes the physical and biogeochemical ocean data required by the marine ecosystem sector of ISIMIP (see FISH-MIP, www.isimip.org/gettingstarted/marine-ecosystems-fisheries/).
- Priorities:
 - IPSL-CM5A-LR
 - 2 GFDL-ESM2M
 - 3 MIROC5
 - 4 HadGEM2-ES
- 20 **Table 1** Bias-corrected climate variables, including data sources of individual EWEMBI variables.

Variable	Short name	Unit
Near-Surface Relative Humidity	hurs	%
Near-Surface Specific Humidity	huss	kg kg ⁻¹
Precipitation (rainfall + snowfall)	pr	kg m ⁻² s ⁻¹
Snowfall Flux	prsn	kg m ⁻² s ⁻¹
Sea-level Air Pressure	ps	Pa
Surface Air Pressure	psl	Pa

Surface Downwelling Longwave Radiation	rlds	W m ⁻²
Surface Downwelling Shortwave Radiation	rsds	W m ⁻²
Near-Surface Wind Speed	sfcWind	m s ⁻¹
Near-Surface Air Temperature	tas	К
Daily Maximum Near-Surface Air Temperature	tasmax	К
Daily Minimum Near-Surface Air Temperature	tasmin	К

 Table 2 Variables provided without bias correction.

Variable	Short name	Unit	Temporal resolution
Ocean variables (for marine ecosystems & fisheries sector)			
Sea Water X Velocity	uo	m s ⁻¹	monthly
Sea Water Y Velocity	vo	m s ⁻¹	monthly
Sea Water Z Velocity	wo	m s ⁻¹	monthly
Sea Water Temperature	to	K	monthly
Dissolved Oxygen Concentration	o2	mol m ⁻³	monthly
Total Primary Organic Carbon Production (by all types of phytoplankton)	intpp	$mol C m^{-2} s^{-1}$	monthly
[calculated as sum of lpp + spp (IPSL) or sum of lpp + spp + dpp (GFDL)]			
Small Phytoplankton Productivity	spp	mol C m ⁻³ s ⁻¹	monthly
Large Phytoplankton Productivity	Ірр	mol C m ⁻³ s ⁻¹	monthly
Diazotroph Primary Productivity	dpp	mol C m ⁻³ s ⁻¹	monthly
Total Phytoplankton Carbon Concentration	phy	mol C m ⁻³	monthly
[sum of lphy + sphy (IPSL) or lphy + sphy + dphy (GFDL)]			
Small Phytoplankton Carbon Concentration	sphy	mol C m ⁻³	monthly
Large Phytoplankton Carbon Concentration	lphy	mol C m ⁻³	monthly

·			
Diazotroph Carbon Concentration	dphy [diaz]	mol C m ⁻³	monthly
Total Zooplankton Carbon Concentration [sum of Izoo + szoo]	zooc	mol C m ⁻³	monthly
Small Zooplankton Carbon Concentration	szoo	mol C m ⁻³	monthly
Large Zooplankton Carbon Concentration	Izoo	mol C m ⁻³	monthly
рН	ph	1	monthly
Sea Water Salinity	SO	psu	monthly
Sea Ice Fraction	sic	%	monthly
Large size-class particulate organic carbon pool	goc	mmol C m ⁻³	monthly
Photosynthetically-active radiation	Par	Einstein m ⁻² day ⁻¹	monthly
Ocean variables (for tropical cyclones)			
Depth-resolved monthly mean Sea Water Potential Temperature	thetao	K	monthly
Sea Surface Temperature	tos	K	monthly
Atmospheric variables (for tropical cyclones)			
Air Temperature at all atmospheric model levels	ta	K	monthly
Specific Humidity at all atmospheric model levels	hus	kg kg ⁻¹	monthly
Eastward Wind at 250 and 850 hPa levels	ua	m s ⁻¹	daily
Northward Wind at 250 and 850 hPa levels	va	m s ⁻¹	daily
Atmospheric variables (for coastal infrastructure)			
Sea Level Pressure	psl	Pa	3-hourly
Eastward Near-Surface Wind	uas	m s ⁻¹	3-hourly
Northward Near-Surface Wind	vas	m s ⁻¹	3-hourly

2.2 Land-use patterns

The following land-use data are provided and described in detail in **Table 4**:

- Historical land-use (LU) changes from the HYDE3.2 data (Klein Goldewijk, 2016b) (see **Figure 3**). Three, consistently generated disaggregation levels are provided:
 - o Rainfed crop land, irrigated crop land, pastures and total crop land (the sum of rainfed and irrigated) filename includes "landusetotals";
 - o As above, with crop land divided into 5 functional crop types (LUH2) filename includes "landuse-5crops";

- As above, with crop land divided into 15 individual crops or crop groups (based on (Monfreda et al., 2008)) filename includes
 "landuse-15crops";
- Transient, future LU patterns generated by the LU model MAgPIE (Popp et al., 2014; Stevanović et al., 2016), assuming population growth and economic development as described in SSP2, for climate-change scenarios using RCP2.6 and RCP6.0 (see **Figure 3**). These scenarios should be referred to as "landuse_ISIMIP2b_ssp2_rcp26" and "landuse_ISIMIP2b_ssp2_rcp60" respectively. Note that while these data sets cover the period 2006-2100, the period 2006-2014 are taken from historical data.

5

The transition from historical to future LU patterns requires a harmonisation between the land-use classes and areas between the different data sets. A full description of how this will be done will appear here shortly.

 Table 3 Agricultural land-use categories

Land-use type	Historical reconstruction	Future projections	Disaggregation into functional crop types (LUH2)	Individual crops or crop groups
Irrigated crops	HYDE	MAgPIE	Total cropland disaggregated into: C ₃ annual, C ₃ nitrogen-fixing, C ₃ perennial, C ₄ annual, C ₄ perennial (contains only sugarcane)	C ₃ annual disaggregated into: rapeseed, rice, temperate cereals, temperate roots, tropical roots, sunflower, others C ₃ annual C ₃ perennial: (no further disaggregation) C ₃ nitrogen-fixing disaggregated into: groundnut, pulses, soybean, others C ₃ nitrogen-fixing C ₄ annual disaggregated into: maize, tropical cereals C ₄ perennial: sugarcane
Rainfed crops	HYDE	MAgPIE	Total cropland disaggregated into: C ₃ annual, C ₃ nitrogen-fixing, C ₃ perennial, C ₄ annual, C ₄ perennial (contains only sugarcane)	C ₃ annual disaggregated into: rapeseed, rice, temperate cereals, temperate roots, tropical roots, sunflower, others C ₃ annual C ₃ perennial: (no further disaggregation) C3 nitrogen-fixing disaggregated into: groundnut, pulses, soybean, others C ₃ nitrogen-fixing C ₄ annual disaggregated into: maize, tropical cereals C ₄ perennial: sugarcane
Managed grassland (pastures)	HYDE	MAgPIE		

bioenergy production (rainfed grass)	-	MAgPIE		
bioenergy production (rainfed trees)	-	MAgPIE		
Urban	HYDE	constant (HYDE)		
Other (natural vegetation etc.)	1 - everything else	1 - everything else	The LUH2 data set includes additional natural land classes, which are consistent with the historical LU data provided here, and could be provided upon request.	(to be specified)

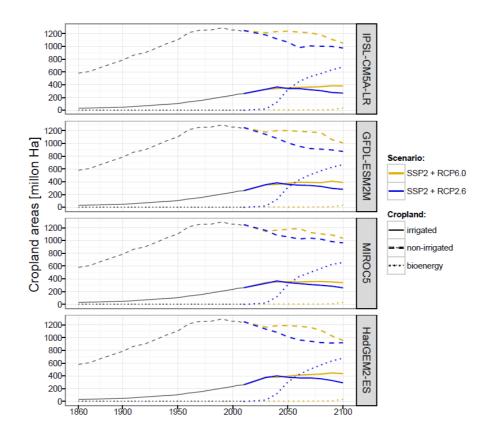
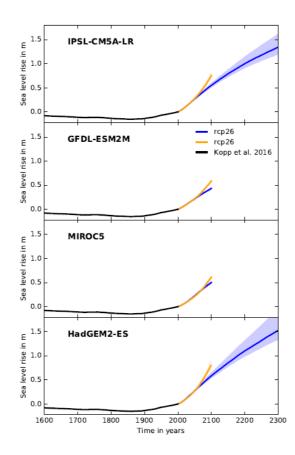



Figure 3 Time series of total crop land (irrigated (solid lines) and non-irrigated (dashed lines)) as reconstructed for the historical period (1860 - 2015) based on HYDE3.2 (Klein Goldewijk, 2016b) and projected under SSP2 (2016-2100) assuming no explicit mitigation of greenhouse gas emissions (RCP6.0, yellow line) and strong mitigation (RCP2.6, dark blue line) as suggested by MAgPIE. Future projections also include land areas for second generation bioenergy production (not included in "total crop land") for the demand generated from the Integrated Assessment Modelling Framework REMIND/MAgPIE, as implemented in the SSP exercise (dotted lines). Global data were linearly interpolated between the historical data set and the projections.

2.3 Sea-level rise patterns

Table 4 Information on sea-level-rise data.

Driver	Historical reconstruction	Future projections	Long-term projections
Sea-level rise	Observed time series up to 2000	From 2000 onwards, spatial patterns derived from GCMs. Regional variation of sea-level rise from glaciers and the large ice sheets are scaled from their respective gravitational patterns.	Constrained extrapolations have been extended to 2299.

Figure 4 Time series of global total sea-level rise based on observations (Kopp et al., 2016, black line) until year 2000 and global-mean-temperature change from IPSL-CM5A-LR (panel 1), GFDL-ESM2M (panel 2), MIROC5 (panel 3) and HadGEM2-ES (panel 4) after year 2000: solid lines: Median projections, shaded areas: uncertainty range between the 5th and 95th percentile of the uncertainty distribution associated with the ice components. Blue: RCP2.6, yellow: RCP6.0. All time series relative to year 2000. Non-climate-driven contribution from glaciers and land water storage are added to the projections.

2.4 Population patterns and economic output (Gross Domestic Product, GDP)

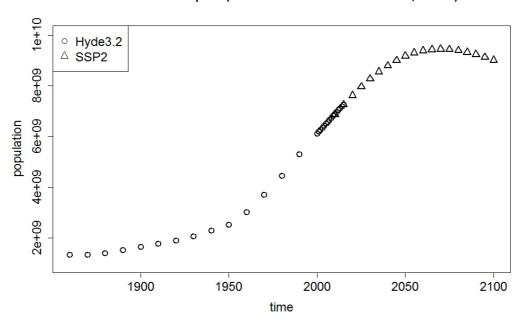


Figure 5 Time series of global population for the historical period (dots) and future projections following the SSP2 storyline (triangles).

Table 5 Socio-economic input data corresponding to SSP2.

Driver	Historical reconstruction	Future projections
GDP	 Annual country-level data derived from the Maddison project (Bolt and van Zanden, 2014, www.ggdc.net/maddison/maddison-project/home.htm) and extended by Penn World Tables 9.0 and World Development Indicators. Annual data on 0.5° grid corresponding to SSP2. 	 Annual country-level data based on OECD projections from the SSP database (Dellink et al., 2015, https://secure.iiasa.ac.at/web-apps/ene/SspDb/) corresponding to SSP2. Annual data on 0.5° grid based on downscaling of country-level data (Murakami and Yamagata, 2016).
Population	 Annual data on a 0.5° and 5'grid based on the HYDE3.2 database (Klein Goldewijk, 2016a). Annual country-level, age-specific population data based on the HYDE3.2 database (Klein Goldewijk, 2016a). 	 Annual data on a 0.5° grid based on the national SSP2 population projections as described in Samir and Lutz, (2014). Annual country-level, age-specific data in 5-year age groups and all-age mortality rates in 5-year time. Also includes rural/urban division.

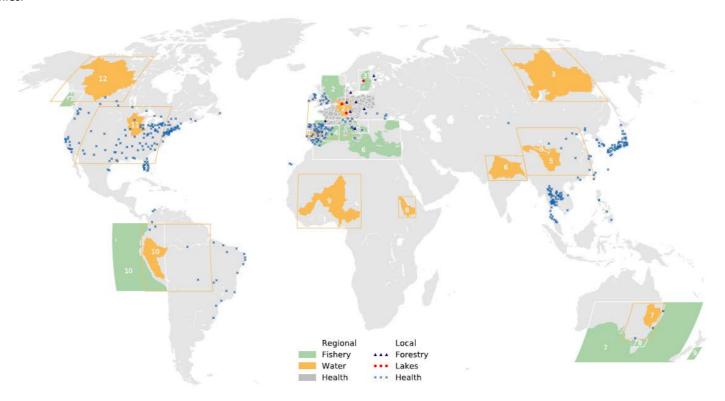
2.5 Other human influences

For all of these input variables, we describe reconstructions to be used for the historical histoc simulations (see **Table 6**). For models that do not allow for time-varying human influences across the historical period, human influences should be fixed at present-day (**2005soc**) levels (see dashed line in **Figure 1**, Group 1). Beyond 2005 all human influences should be held constant (Group 2) or varied according to SSP2 if associated projections are available (**Figure 2**, Group 3). Within ISIMIP2b projections are provided for future irrigation-water extraction, fertilizer application rates and nitrogen deposition (see **Table 6**).

Table 6 Data sets representing "other human influences" for the historical simulations (**histsoc**, Group 1) and the future projections accounting for changes in socio-economic drivers (**rcp26soc/rcp60soc**, Group 2).

Driver	Historical reconstruction	Future projections
Reservoirs & dams I location upstream area capacity construction/commissioning year	Global data on 0.5° grid based on GranD database and the DDm30 routing network. Documentation: http://www.gwsp.org/products/grand-database.html Note: Simple interpolation can result in inconsistencies between the GranD database and the DDM30 routing network (wrong upstream area due to misaligned dam/reservoir location). A file is provided with locations of all larger dams/reservoirs adapted to DDM30 so as to best match reported upstream areas.	No future data sets are provided. Held fixed at year 2005 levels in all simulations.

	1	
Water abstraction for domestic and industrial uses	Generated by each modelling group individually (e.g. following the varsoc scenario in ISIMIP2a). For modelling groups that do not have their own representation, we provide files containing the multi-model mean domestic and industrial water withdrawal and consumption generated from the ISIMIP2a varsoc runs of WaterGAP, PCR-GLOBWB, and H08. This data is available from 1901 until 2005.	Generated by each modelling group individually. For modelling groups that do not have their own representation, we provide files containing the multimodel mean (from the global water models WaterGAP, PCRGLOBWB, and H08) domestic and industrial water withdrawal and consumption under SSP2 from the Water Futures and Solutions (WFaS) (Wada et al., 2016) project.
		This data is available from 2006 until 2050. The values should be kept constant from 2050 onwards.
		The data provided for rcp26soc and rcp60soc are identical and both are taken from simulations based on RCP6.0. The combination SSP2–RCP2.6 was not considered in WFaS; the difference is expected to be small since the choice of RCP only affects cooling water demand in one of the three models.
Irrigation water extraction (km ³)	Individually derived from the land-use and irrigation patterns provided. Water directly used for livestock (e.g. animal husbandry and drinking), except for indirect uses by irrigation of feed crops, is expected to be very low (Müller Schmied et al., 2016) and could be set to zero if not directly represented in the individual models.	Derived from future land-use and irrigation patterns provided based on output from the MAgPIE model (see section 0). Land-use projections are provided for: SSP2+RCP6.0 SSP2+RCP2.6;
		Direct water use for livestock should


be ignored (i.e. can be set to zero).

N fertilizer use (kg per ha of cropland)	Annual crop-specific input per ha of crop land for C_3 and C_4 annual, C_3 and C_4 perennial and C_3 Nitrogen fixing. This data set is part of the LUH2 dataset developed for CMIP6 (Hurtt et al.) based on HYDE3.2.	Crop group-specific inorganic N fertilizer use per area of cropland provided by the LUH2-ISIMIP2b dataset, which differs for SSP2CRCP2.6 and SSP2CRCP6.0. To allow for the allcrops model set-up this informatio is extrapolated to all land cells using a nearest neighbor algorithm.
Nitrogen (NH _x and NO _y) deposition	Annual, 0.5° gridded data for 1850-2005 derived by taking the average of three atmospheric chemistry models (GISS-E2-R, CCSM-CAM3.5, and GFDL-AM3) in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) (0.5° x 0.5°) (Lamarque et al., 2013a, 2013b). GISS-E2-R provided monthly data; CCSM-CAM3.5 provided monthly data in each decade from 1850s to the 2000s; and GFDL-AM3 provided monthly data for 1850-1860, 1871-1950, 1961-1980, 1991-2000 and 2001-2010.	As per historical reconstruction for 2006-2099 following RCP2.6 and RCP6.0.
	Annual deposition rates calculated by aggregating the monthly data, and deposition rates in years without model output were calculated according to spline interpolation (CCSM-CAM3.5) or linear interpolation (for GFDL). The original deposition data was downscaled to spatial resolution of half degree (90° N to 90° S, 180° W to 180° E) by applying the nearest interpolation.	
Fishing intensity	Depending on model construction, one of: Fishing effort from the Sea Around Us Project (SAUP); catch data from the Regional Fisheries Management Organizations (RFMOs) local fisheries agencies; exponential fishing technology increase and SAUP economic reconstructions. Given that the SAUP historical reconstruction starts in 1950, fishing effort should be held at a constant 1950 value from 1860-1950.	Held constant after 2005 (2005soc)

Forest management	Based on observed stem numbers (see Table 17-Table 18)	Based generic future management
		practices (see Table 16-Table 18)

2.6 Focus Regions

Simulation data are welcome for all world regions. Even single model simulations for specific sites will help to generate a more comprehensive picture of climate change impacts and potentially allow for constraining global models. However, to allow for model intercomparisons simulations should also be provided for the sector specific focus regions shown in **Figure 6** and defined in **Table 7**, if feasible with your model. For regions not defined in the protocol, please contact the ISIMIP Team to agree on appropriate naming and define the location of the region in the metadata of your output files.

Figure 6 ISIMIP focus regions. See **Table 7** for region definitions.

2.7 Lake specifications

Grid-scale lake fraction is provided based on the Global Lake and Wetland Database (GLWD; Lehner and Döll, 2004) and available on the DKRZ input data repository (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/pctlake.nc4; Subin et al., 2012).

Since a 0.5°x0.5° pixel potentially contains multiple lakes with different characteristics (e.g. in terms of bathymetry, transparency, fetch), it is not possible to fully represent this subgrid-scale heterogeneity. Instead, the global-scale lake simulations should represent a 'representative lake' for a given pixel. Consequently, no stringent requirement is imposed with respect to lake depth, light extinction coefficient or initial conditions. However, lake depth, modellers are encouraged to use the data from the Global Lake Data Base (GLDB). A regridded lake-depth field based on GLDBv1 2010) is available at 0.5°x0.5° resolution the DKRZ repository (Kourzeneva, on input data (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/lakedepth.nc4); this field was aggregated from 30 arc sec to 1.9°x2.5° and then interpolated again to 0.5°x0.5°; Subin et al., 2012). Alternatively, modellers may choose to use the more recent GLDBv2 available at 30 arc sec (http://www.flake.igbberlin.de/ep-data.shtml, Choulga et al., 2014).

 Table 7 List of ISIMIP focus regions as shown in Figure 6.

Focus region (shortname) Number refers to	Zonal extent (longitude)	Meridional extent (latitude)	River basin(s) or Region (shortname).				
Regional water simulations							
North America (11) (nam)	114°0′W- 77°30′W	28°30′N-50°0′N	Mississippi (Mississippi)				
Western Europe (1, 2) (weu)	9°30′W–12°0′E	38°30′N-52°30′N	Tagus und Rhine (rhine)				
West Africa (9) (waf)	12°0′W-16°0′E	4°0′N-24°30′N	Niger (niger)				
South Asia (6) (sas)	73°0′E–90°30′E	22°0′N-31°30′N	Ganges (ganges)				
China (4, 5) (chi)	90°30′E-120°30′E	24°0′N-42°0′N	Yellow (yellow), Yangtze (Yangtze) (yellow,gtze)				
Australia (7) (aus)	138°30′E-152°30′E	38°0′S –24°30′S	Murray Darling (murrydarling)				
Amazon (10) (ama)	80°0'W-50°0'W	20°0'S-5°30'N	Amazon (amazon)				
Blue Nile (8) (blu)	32°30′E-40°0′E	8°0′N–16°0′N	Blue Nile (bluenile)				
Lena (3) (len)	103°0′E-141°30′E	52°0′N-72°0′N	Lena (lena)				
Canada (12)	140°0′W- 103°0′W	52°0′N-69°0′N	Mackenzie (mackenzie)				
	Regiona	al lake simulations					
Große Dhünn (reservoir)	7°12'E	51°04'N					
Lake Constance (Bodensee)	9°24'E	47°37'N					
Lake Erken	18°35'E	59°51'N					
Lake in northern Spain			TBC, depending on funding of WATExR, Rafael				
	Regional forestry si	mulations					
BilyKriz	18.32	49.300	-				
Collelongo	13.588	41.849					
Soro	11.645	55.486					
Hyytiala	24.295	61.848					
Kroof	11.400	48.250					
Solling304	9.570	51.770					

Solling305	9.570	51.770	
Peitz	14.350	51.917	
LeBray	-0.769	44.717	
		Ocean regions	
North-west Pacific (1) (pacific-r	nw)	134°30′W-125°30′W	49°30′N-56°30′N
North Sea (2) (north-sea)		4°30′W-9°30′E	50°30′N-62°30′N
Baltic Sea (3)		15°30′E-23°30′E	55°30′N-64°30′N
North-west Meditteranean (4)	(med-nw)	1°30′W-6°30′E	36°30′N-43°30′N
Adriatic Sea (5) (adriatic-sea)		11°30′E-20°30′E	39°30′N-45°30′N
Meditteranean Sea (6) (med-glo	ob)	6°30′W-35°30′E	29°30′N-45°30′N
Australia (7) (australia)		120°30′E-170°30′E	47°30′S-23°30′S
Eastern Bass Strait (8) (eastern-	-bass-strait)	145°30′E-151°30′E	41°30′S-37°30′S
Cook Strait (9) (cook-strait)		174°30′E-179°30′E	46°30′S-40°30′S
(10) (psp)		90° 30′ W-30° 30′ E	48°30′N-70°30′N
(11) (mat)		90° 30′ W-30° 30′ E	35°30′N-49°30′N
(12) (med-atl)		90° 30′ W-30° 30′ E	17°30′N-36°30′N
(13) (tst)		90° 30′W –30° 30′ E	0°30′S-18°30′N
North Humboldt Sea (14) (Hum	boldt-n)	93°30′W-69°30′W	20°30′S-6°30′N

3 Conventions for File Names and Formats

3.1 General Notes

It is important that you comply precisely with the formatting specified below, in order to facilitate the analysis of your simulation results in the ISIMIP framework. Incorrect formatting can seriously delay the analysis. The ISIMIP Team will be glad to assist with the preparation of these files if necessary.

For questions or clarifications, please contact info@isimip.org or the data manager directly (buechner@pik-potsdam.de) before submitting files.

3.1.1 File names

Things to note:

10

15

- Report one variable per file
- Use **lowercase** letters in file names only
- Separate only specifiers with underscore "_"
- Use hyphens for specifier internal string separation, e.g. in model name
- NetCDF file extension is .nc4

The file name format is:

<modelname>_<gcm>_<climate_scenario>_<soc-scenario>_<co2sens-scenarios>_<variable>_<region>_<timestep>_<start-year>_<endyear>.nc4

The identifiers in brackets should be replaced with the appropriate identifiers from **Table 9**. Specifiers may be dependent on the sector. The identifiers <variable> might also contain information about the plant functional type (in the biomes and permafrost sectors). The pft naming is model-specific and hence has to be reported in the impact-model database entries for each model (www.isimip.org/impactmodels). In the forestry sector the identifier <variable> might contain information about the tree species. The species names codes are listed in **Table 20**.

Examples:

```
lpjml_ipsl-cm5a-lr_historical_histsoc_co2_qtot_global_annual_1861_1870.nc4
lpjml ipsl-cm5a-lr rcp26 rcp26soc 2005co2 yield mai global annual 2006 2010.nc4
```

Table 8 Identifiers for file naming convention.

Item	Possible specifiers	Description
<modelname></modelname>		Model name

<gcm></gcm>	hadgem2-es, ipsl-cm5a-lr, miroc5, gfdl-esm2m	Name of the General Circulation Model from which climate-forcing data was used.
		Where point data has been used, include the site name, e.g. hadgem2-esForestBilyKriz
<climate_scenario></climate_scenario>	picontrol, historical, rcp26, rcp60	Climate & CO2 concentration scenario (RCP). For the locally-bias corrected forest data, please add "lbc" (e.g. historicallbc)
<soc -scenario=""></soc>	nosoc, 1860soc, histsoc, 2005soc, rcp26soc, rcp60soc, 2100rcp26soc	Scenario describing other human influences, such as land use and land management.
<co2sens-scenario></co2sens-scenario>	co2, 2005co2	'co2' for all experiments other than the sensitivity experiments for which 2005co2 is explicitly written.
		Note: even models in which CO2 has no effect should use the co2 identifier relevant to the experiment.
<variable></variable>		Output variable names – see sector-specific tables.
<region></region>	global, [region/sites]	Regions/sites names given in Section 2.6.
<timestep></timestep>	3hr, daily, monthly, annual	The temporal resolution of your output data files.
<start-year>_<end-year></end-year></start-year>	e.g. 1861_1870	Files should be uploaded in 10-year pieces. For the transition from the historical to the future period (2005-2006), files should be separated, i.e. the identifiers would be 2001_2005 and 2006_2010.

4 Sector-specific implementation of scenario design

Here we provide a more detailed description of the sector-specific simulations. The grey, red, and blue background colours of the different entries in the tables indicate Group 1, 2, 3 runs, respectively. Runs marked in violet represent additional sector-specific sensitivity experiments. Each simulation run has a name (Experiment I to VII) that is consistent across sectors, i.e. runs from the individual experiments could be combined for a consistent cross-sectoral analysis. Since human influences represented in individual sectors may depend on the RCPs (such as land-use changes), while human influences relevant for other sectors may only depend on the SSP, the number of experiments differs from sector to sector.

5 Water (hydrological models)

5.1 Scenarios

Climate & CO ₂ con	centration scenarios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO ₂ concentration from RCP2.6
rcp60	Future climate and CO₂ concentration from RCP6.0
Human influence a	and land-use scenarios
1860soc	Pre-industrial land use and other human influences. Given the small effect of dams & reservoirs before 1900, modellers may apply the 1901 dam/reservoir configuration during the pre-industrial period and the 1861-1900 part of the historical period if that is significantly easier than applying the 1861 configuration.
histsoc	Varying historical land use and other human influences.
2005soc	Fixed year-2005 land use and other human influences.
rcp26soc	Varying land use, water abstraction and other human influences according to SSP2 and RCP2.6; fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.
rcp60soc	Varying land use, water abstraction and other human influences according to SSP2 and RCP6.0, fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.
2100rcp26soc	Land use and other human influences fixed at year 2100 levels according to RCP2.6.

For the historical period, groups that have limited computational capacities may choose to report only part of the full period, but including at least 1961-2005. All other periods should be reported completely. For those models that do not represent *changes* in human influences, those influences should be held fixed at 2005 levels throughout all Group 1 (cf. **2005soc** marked as dashed blue lines in Fig. 1) and Group 2 simulations. Group 3 will be identical to Group 2 for these models and thus does not require additional simulations. Models that do not include human influences *at all* should

nevertheless run the Group 1 and Group 2 simulation, since these simulations will still allow for an exploration of the effects of climate change compare to pre-industrial climate, and will also allow for a better assessment of the relative importance of human impacts versus climate impacts. These runs should be named as **nosoc** simulations.

The regional-scale simulations are performed for 12 large river basins. In six river basins (Tagus, Niger, Blue Nile, Ganges, Upper Yangtze and Darling) water management (dams/reservoirs, water abstraction) will be implemented. In the other six river basins, human influences such as LU changes, dams and reservoirs, and water abstraction is not relevant (Upper Yellow, Upper Amazon) or negligible (Rhine, Lena, Upper Mississippi), and can be ignored. Apart from this, regional water simulations should follow the global water simulations to allow for a cross-scale comparison of the simulations. The focus lakes for the local lake models are located within the focus river basins and listed in section 5.2.

Table 9 ISIMIP2b scenarios for global and regional water simulations. Option 2* only if option 1 not possible.

	Experiment	Input	pre-industrial 1661-1860	historical 1861-2005	future 2006-2099	extended future 2100-2299
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
ı	varying LU & human influences up to 2005, then	Human &	Option 1: 1860soc	Option 1: histsoc		
	fixed at 2005 levels thereafter	LU	Option 2*: 2005soc	Option 2*: 2005soc	2005soc	2005soc
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26
II	varying LU & human influences up to 2005, then	Human & LU	Experiment I	Option 1: histsoc	2005soc	2005soc
I	fixed at 2005 levels thereafter			Option 2*: 2005soc		
III	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Evperiment II	rcp60	not simulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Laperiment	Experiment II	2005soc	not simulated
IV	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I	picontrol	picontrol

	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human &			rcp26soc	2100rcp26soc
V	no climate change, pre-industrial CO ₂ Climate & CO ₂		Evnoriment I	picontrol	not simulated	
V	varying human influences & LU (RCP6.0)	Human &	Experiment I	Experiment I	rcp60soc	not simulated
VI	RCP2.6 climate & CO ₂	Climate & CO ₂	- Experiment I	Experiment II	rcp26	rcp26
VI	varying human influences & LU up to 2100 (RCP2. then fixed at 2100 levels thereafter		Experiment	Experiment	rcp26soc	2100rcp26soc
VII	RCP6.0 climate & CO ₂ Climate & CO ₂ Experiment I		Experiment II	гср60	not simulated	
VII	varying human influences & LU (RCP6.0)	Human &	Laperiment	слреннени п	rcp60soc	not simulated

5.2 Global and regional hydrological models

Variable names are chosen to comply, where feasible, with the ALMA convention (www.lmd.jussieu.fr/~polcher/ALMA/convention output 3.html) and the names used in WATCH/WaterMIP. All variables are to be reported as time-averages with the indicated resolution; do not report instantaneous values ('snapshots'). Exceptions are maxdis and mindis, which are the maximum and minimum daily-average discharge in a given month, respectively, to be reported on a monthly basis (see below).

5.2.1 Output data

Table 10 Output variables to be reported by water sector models. Variables highlighted in orange are requested from both global and regional models; discharge at gauge level (highlighted in purple) is requested only from regional models; other variables are requested only from global models. Variables marked by * are also relevant for the permafrost sector and also listed there. Variables marked by ** are only relevant for the permafrost sector.

Variable (long name)	Variable name	Resolution	Unit (NetCDF	Comments
			format)	

Hydrological Variables				
*Runoff	Qtot	daily (0.5°x0.5°)	kg m ⁻² s ⁻¹	total (surface + subsurface) runoff (qtot = qs + qsb). If daily resolution not possible, please provide monthly.
Surface runoff	Qs	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Water that leaves the surface layer (top soil layer) e.g. as overland flow / fast runoff
Subsurface runoff	Qsb	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Sum of water that flows out from subsurface layer(s) including the groundwater layer (if present). Equals qg in case of a groundwater layer below only one soil layer
Groundwater recharge	Qr	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Water that percolates through the soil layer(s) into the groundwater layer. In case seepage is simulated but no groundwater layer is present, report seepage as qr and qg.
Groundwater runoff	Qg	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Water that leaves the groundwater layer. In case seepage is simulated but no groundwater layer is present, report seepage as qr and qg.
Discharge (gridded)	Dis	daily (0.5°x0.5°)	m ³ s ⁻¹	If daily resolution not possible, please provide monthly
Discharge (gauge level)	Dis	daily (see website for gauge locations)	m ³ s ⁻¹	If daily resolution not possible, please provide monthly
Monthly maximum of daily discharge	Maxdis	monthly (0.5°x0.5°)	m ³ s ⁻¹	Reporting this variable is not mandatory, but desirable particularly if daily discharge data is unfeasible
Monthly minimum of daily discharge	Mindis	monthly (0.5°x0.5°)	m ³ s ⁻¹	Reporting this variable is not mandatory, but desirable particularly if daily discharge data is unfeasible
Evapotranspiration	Evap	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Sum of transpiration, evaporation, interception losses, and sublimation.

Potential Evapotranspiration	Potevap	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	as for <i>evap</i> , but with all resistances set to zero, except the aerodynamic resistance.		
*Soil moisture	soilmoist	monthly (0.5°x0.5°)	kg m ⁻²	provide soil moisture for all depth layers (i.e. 3D-field), and indicate depth in m.		
Soil moisture, root zone	rootmoist	monthly (0.5°x0.5°)	kg m ⁻²	Total simulated soil moisture available for evapotranspiration. If simulated by the model. Please indicate the depth of the root zone for each vegetation type in your model		
**Frozen soil moisture for each layer	soilmoistfroz	monthly (0.5°x0.5°)	kg m ⁻²	water content of frozen soil		
**Temperature of Soil	Tsl	daily (0.5°x0.5°)	К	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea". Also need depths in meters. Daily would be great, but otherwise monthly would work. **if daily resolution not possible, please provide monthly		
**Snow depth	Snd	monthly (0.5°x0.5°)	m	Grid cell mean depth of snowpack.		
*Snow water equivalent	Swe	monthly (0.5°x0.5°)	kg m ⁻²	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.		
Total water storage	Tws	monthly (0.5°x0.5°)	kg m ⁻²	Mean monthly water storage in all compartments. Please indicate in the netcdf metadata which storage compartments are considered.		
*Annual maximum daily thaw depth	thawdepth	annual (0.5°x0.5°)	m	calculated from daily thaw depths, which do not need to be submitted themselves.		
Rainfall	Rainf	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	These variables are required for test purposes only. If you need to reduce output data volumes, please provide these variables only once, with the first (test) data set you submit, e.g. for the first decade of each experiment.		

Snowfall	Snowf	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	NOTE: rainf + snowf = total precipitation
----------	-------	---------------------	------------------------------------	---

Water management variables (for models that consider water management/human impacts)

NOTE: Models that cannot differentiate between water-use sectors may report the respective totals and include the first letter of each sector included in the filenames. E.g. combined potential water withdrawal in the irrigation and livestock sectors would be "pilww"; combined actual water consumption in the irrigation, domestic, manufacturing, electricity, and livestock sectors would be "aidmeluse" (see section 2.6 for the latest naming convention regarding file names).

Irrigation water demand (=potential irrigation water Withdrawal)	Pirrww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Irrigation water withdrawal, assuming unlimited water supply		
Actual irrigation water withdrawal	Airrww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Irrigation water withdrawal, taking water availability into account; please provide if computed		
Potential irrigation water consumption	Pirruse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	portion of withdrawal that is evapo-transpired, assuming unlimited water supply		
Actual irrigation water consumption	Airruse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	portion of withdrawal that is evapotranspired, taking water availability into account; if computed		
Actual green water consumption on irrigated cropland	airrusegreen	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	actual evapotranspiration from rain water over irrigated cropland; if computed		
Potential green water consumption on irrigated cropland	pirrusegreen	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	potential evapotranspiration from rain water over irrigated cropland; if computed and different from airrusegreen		
Actual green water consumption on rainfed cropland	arainfusegreen	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	actual evapotranspiration from rain water over rainfed cropland; if computed		
Actual domestic water withdrawal	adomww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		

Actual domestic water consumption	adomuse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual manufacturing water withdrawal	Amanww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual Manufacturing water consumption	amanuse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual electricity water withdrawal	Aelecww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual electricity water consumption	Aelecuse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual livestock water withdrawal	Aliveww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Actual livestock water consumption	Aliveuse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	if computed		
Total (all sectors) actual water consumption	Atotuse	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Sum of actual water consumption from all sectors in case it is not possible to provide this information sector-specific.		
Total (all sectors) actual water withdrawal	Atotww	monthly (0.5°x0.5°)	kg m ⁻² s ⁻¹	Sum of actual water withdrawal from all sectors in case it is not possible to provide this information sector-specific		

Static output

Soil types	Soil	static (0.5°x0.5°)		Soil types or texture classes as used by your model. Please include a description of each type or class, especially if these are different from the standard HSWD and GSWP3 soil types. Please also include a description of the parameters and values associated with these soil types (parameter values could be submitted as spatial fields where appropriate).
Leaf Area Index	lai	static (0.5°x0.5°) or monthly (0.5°x0.5°) where appropriate	1	if used by, or computed by the model

6 Lakes

Simulations of climate-change effects on lakes will be made using coupled lake-hydrodynamic and water-quality models. Models can operate on the global scale (uncalibrated) or on a number of case-study lakes (calibrated). Both global and local models will conduct the same set of scenarios.

Global lake models

Global-scale simulations should be performed either assuming a lake present in every pixel or using grid-scale lake fraction based on the Global Lake Döll. and Wetland Database (GLWD: Lehner and 2004) available on the DKRZ input and data repository (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/pctlake.nc4; Subin et al., 2012). Since a 0.5°x0.5° pixel potentially contains multiple lakes with different characteristics (e.g. in terms of bathymetry, transparency, fetch), it is not possible to fully represent this subgrid-scale heterogeneity. Instead, the global-scale lake simulations should represent a 'representative lake' for a given pixel. Consequently, no stringent requirement is imposed with respect to lake depth, light extinction coefficient or initial conditions.

For lake depth, modellers are encouraged to use the data from the Global Lake Data Base (GLDB). A regridded lake depth field based on GLDBv1 2010) is available at 0.5°x0.5° resolution **DKRZ** (Kourzeneva, on the input data repository (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/lakedepth.nc4; this field was aggregated from 30 arc sec to 1.9°x2.5° and then interpolated again to 0.5°x0.5°; Subin et al., 2012), but modellers may choose to use the more recent GLDBv2 available at 30 arc sec (http://www.flake.igb-berlin.de/epdata.shtml, Choulga et al., 2014). Modellers are requested to document their approach regarding lake depth, light extinction coefficient and initial conditions in the ISIMIP Impact Model Database (www.isimip.org/impactmodels).

Local lake models

Simulations will be made for case-study lakes selected based on the availability of high-quality meteorological and limnological observations, thereby aiming for a good spread across climates and lake types. Model inputs consist of the meteorological variables given in **Table 1**, water inputs from hydrological model simulations, and nutrient loads estimated using simple loading function (Haith and Shoemaker., 1987; Schneiderman et al., 2002) or statistical estimation procedures. In addition site-specific data will be needed such as lake bathymetry data. Climate-change effects on lakes will be proportioned according to the ISIMP2b experiments (**Table 10**). Direct climate effects on lakes that influence factors such as water temperature stratification period, mixing depth etc. will be simulated using climate scenarios shown in **Table 11** and water inflows from hydrologic model simulations based on the **Table 9** experiments. Lake water quality simulations, which affect factors such as phytoplankton and nutrient levels, will also need to include simple nutrient loading inputs linked to the hydrologic model simulations.

All variables are to be reported as time-averages with the indicated resolution. It is expected that most models will output data at daily resolution.

Model outputs that indicate the timing or duration of seasonal changes and do not vary with depth (i.e. onset of thermal stratification) are shaded light blue. The remaining outputs vary with both time and depth (i.e. Chlorophyll Concentration). In the case of time and depth-varying, data should be provided as a mean of the epilimnion or mixed layer, and mean of the hypolimnion, and as fully-resolved vertical profiles. When the lake is simulated as completely mixed or isothermal, the mean of the entire water column is assigned to the epilimnion, and the hypolimnion concentration is set to a missing value.

Note that the range of model outputs will vary from model to model. Below are generic outputs that capture the basic information provided by most lake-eutrophication models. Modelling groups whose models do not provide all information listed here are invited to report on the reduced set of variables implemented in their models.

6.1 Scenarios

Climate & CO ₂ c	Climate & CO₂ concentration scenarios					
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.					
historical	Historical climate and CO ₂ concentration.					
rcp26	Future climate and CO ₂ concentration from RCP2.6					
rcp60	Future climate and CO ₂ concentration from RCP6.0					
Human influence	te and land-use scenarios					
1860soc	Pre-industrial land use and other human influences. Given the small effect of dams & reservoirs before 1900, modellers may apply the 1901 dam/reservoir configuration during the pre-industrial period and the 1861-1900 part of the historical period if that is significantly easier than applying the 1861 configuration.					
histsoc	Varying historical land use and other human influences.					
2005soc	Fixed year-2005 land use and other human influences.					
rcp26soc	Varying land use ((e.g. point source inputs of nutrients and operational changes of reservoirs), water abstraction and other human influences according to SSP2 and RCP2.6; fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.					
rcp60soc	Varying land use, water abstraction and other human influences according to SSP2 and RCP6.0, fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.					
2100rcp26soc	Land use and other human influences fixed at year 2100 levels according to RCP2.6.					

5

For the historical period, groups that have limited computational capacities may choose to report only part of the full period, but including at least 1961-2005. All other periods should be reported completely. For those models that do not represent *changes* in human influences, those influences

should be held fixed at 2005 levels throughout all Group 1 (cf. **2005soc** marked as dashed blue lines in Fig. 1) and Group 2 simulations. Group 3 will be identical to Group 2 for these models and thus does not require additional simulations. Models that do not include human influences *at all* should nevertheless run the Group 1 and Group 2 simulation, since these simulations will still allow for an exploration of the effects of climate change compare to pre-industrial climate, and will also allow for a better assessment of the relative importance of human impacts versus climate impacts.

These runs should be named as **nosoc** simulations.

Table 11 ISIMIP2b scenarios for lakes simulations. Option 2* only if option 1 not possible.

	Experiment	Input	pre-industrial 1661-1860	historical 1861-2005	future 2006-2099	extended future 2100-2299
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
ı	varying LU and other human influences according to	Human &	Option 1: 1860soc	Option 1: histsoc	2005soc	2005soc
	RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter		Option 2*: 2005soc	Option 2*: 2005soc		
	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	historical	rcp26	rcp26
II	varying LU and other human influences according to RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter	Human & LU		Option 1: histsoc	2005soc	2005soc
				Option 2*: 2005soc		
	RCP2.6 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂		Experiment II	rcp26, 2005co2	rcp26, 2005co2
lla	LU & human influences fixed at 2005 levels after 2005	Human & LU	Experiment I		2005soc	2005soc
III	RCP6.0 climate & CO ₂	Climate & CO ₂	Fynariment I	Experiment II	гср60	not simulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter		Experiment I	Laperiment	2005soc	not simulated

	no climate change, pre-industrial CO ₂	Climate & CO ₂			picontrol	picontrol	
IV	varying LU and other human influences according to RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment I	rcp26soc	2100rcp26soc	
V	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I Experiment I		not simulated	
ľ	varying human influences & LU (RCP6.0)	Human & LU	Experiment	Experiment	rcp60soc	not simulated	
VI	RCP2.6 climate & CO₂	Climate & CO ₂	Experiment I	Experiment II	rcp26	rcp26	
VI	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	схрепшенст	схреншені п	rcp26soc	2100rcp26soc	
VII	RCP6.0 climate & CO₂	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated	
VII	varying human influences & LU (RCP6.0)	Human &		Experiment	rcp60soc	not simulated	

6.1.1 Output data

Table 12 Output variables to be reported by lake models.

Variable (long name)	Variable name	Spatial Resolution	Temporal Resolution	Depth Resolution	Unit (NetCDF format)	Comments
		н	ydrothermal Va	ariables		
Onset of thermal stratification	stratstart	Representative lake associated with grid cell)	Seasonal	None	Day of year when stratification started (1-365)	Day of year associated with the onset of thermal stratification

Loss of Statification	stratend	(Representative lake associated with grid cell)	Seasonal	None	Day of year when stratification ended (1-365)	Day of year associated with the loss of thermal stratification
Duration of stratification	stratdur	Representative lake associated with grid cell)	Seasonal	None	d	Total days of thermal stratification
Onset of lake Ice cover	icestart	Representative lake associated with grid cell)	Seasonal	None	Day of year when ice cover started (1-365)	Day of year associated with the onset of permanent ice cover
Loss of lake Ice cover	iceend	Representative lake associated with grid cell)	Seasonal	None	Day of year when ice cover ended (1-365)	Day of year associated with the loss of permanent ice cover
Duration of Lake Ice Cover.	icedur	Representative lake associated with grid cell)	Seasonal	None	d	Total days of continuous ice cover
Depth of Thermocline	thermodepth	Representative lake associated with grid cell)	Daily	Single depth	m	Depth corresponding the maximum water density gradient
Water temperature	watertemp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	К	Simulated water temperature. Layer averages and full profiles
Lake layer ice mass fraction	lakeicefrac	Representative lake associated with grid cell	Monthly (Daily)	Mean Epi	unitless	Fraction of mass of a given layer taken up by ice
			•	•		

Water Quality Variables

Chlorophyll Concentration	chl	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	g ⁻³ m ⁻³	Total water chlorophyll concentration – indicator of phytoplankton
Phytoplankton Functional group biomass	phytobio	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³ as carbon	Different models will have different numbers of functional groups so that the reporting of these will vary by model
Zoo plankton biomass	zoobio	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³ as carbon	Total simulated Zooplankton biomass
Total Phosphorus	tp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Particulate Phosphorus	pp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Total Dissolved Phosphorus	tpd	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Some models may also output data for soluable reactive phosphorus (SRP)
Total Nitrogen	tn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	

Particulate Nitrogen	pn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Total Dissolved Nitrogen	tdn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Some models may also output data for Nitrate (NO2) nitrite (NO3) and ammonium (NH4)
Dissolved Oxygen	do	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Dissolved Organic Carbon	doc	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Not always available
Dissolved Silica	si	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Not always available

7 Biomes

7.1 Scenarios

Since the pre-industrial simulations are an important part of the experiments, the spin-up has to finish before the pre-industrial simulations start. The spin-up should be using pre-industrial climate (**picontrol**) and year 1860 levels of "other human influences". For this reason, the pre-industrial climate data should be replicated as often as required. The precise implementation of the spin up will be model specific, the description of wich will be part of the reporting process.

Climate & CO ₂ scena	arios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO ₂ concentration from RCP2.6
rcp60	Future climate and CO ₂ concentration from RCP6.0
2005co2	CO2 concentration fixed at 2005 levels at 378.81ppm.
Human influence an	nd land-use scenarios
1860soc	Constant pre-industrial (1860) land use, nitrogen deposition, and fertilizer input.
histsoc	Varying historical land use, nitrogen deposition and fertilizer input.
2005soc	Fixed year-2005 land use, nitrogen deposition and fertilizer input.
rcp26soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP2.6.
rcp60soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP6.0.
2100rcp26soc	Land use, nitrogen deposition and fertilizer input fixed at year 2100 levels according to RCP2.6 in 2100.

 Table 13 ISIMIP2b scenarios for the global biomes simulations.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299	
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol	
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	1860soc	histsoc	2005soc	2005soc	
Ш	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	historical	rcp26	rcp26	
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Схренненст	histsoc	2005soc	2005soc	
lla	RCP2.6 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂	Experiment I	Experiment II	rcp26, 2005co2	rcp26, 2005co2	
IIa	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Схрепшенст	Ехрепшені п	2005soc	2005soc	
	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	гср60	not simulated	
""	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Схренненст	Experiment ii	2005soc	not simulated	
IV	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I	picontrol	picontrol	
	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Схрепшенст	Схрепшени	rcp26soc	2100rcp26soc	
V	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I Experiment I		picontrol	not simulated	
	varying human influences & LU (RCP6.0)	Human & LU	·	rcp60soc		not simulated	

VI	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	rcp26	rcp26
VI	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Схренненст	Experiment ii	rcp26soc	2100rcp26soc
VII	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	гср60	not simulated
	varying human influences & LU (RCP6.0)	Human & LU			rcp60soc	

Table 14 Additional sector-specific simulations for the biome sector.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299	
la	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol	
	LU & human influences fixed at 1860 levels	Human & LU	1860soc	1860soc	1860soc	1860soc	
IIb	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	historical	rcp26	rcp26	
	LU & human influences fixed at 1860 levels	Human & LU		1860soc	1860soc	1860soc	
IIIa	RCP6.0 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂	Experiment I	Experiment II	rcp60, 2005co2	not simulated	
IIIa	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter		- карентепі і	Laperinient II	2005soc	not simulated	
IIIb	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	гср60	not simulated	

LU & human influences fixed at 1860 levels	Human & LU		1860soc	

5 7.2 Output data

Table 15 Variables to be reported by biomes models. Variables marked by * are also relevant for the permafrost sector and also listed in **Table 21**. **Note**: If you cannot provide the data at the temporal or spatial resolution specified, please provide it the highest possible resolution of your model.

long name	units		output variable name	resolution	comment		
Essential outputs	Essential outputs						
Pools							
*Carbon Mass in Vegetation biomass	kg m ⁻²	per pft and gridcell total	cveg_ <pft></pft>	annual	Gridcell total cveg is essential. Per PFT information is desirable.		
*Carbon Mass in Litter Pool	kg m ⁻²	per gridcell total	clitter	annual	Info for each individual pool.		
*Carbon Mass in Soil Pool	kg m ⁻²	per gridcell total	csoil	annual	Info for each individual pool.		
Fluxes							
*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	gpp	monthly (daily)			

*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	per pft	gpp_ <pft></pft>	annual	
*Carbon Mass Flux into atmosphere due to Autotrophic (Plant) Respiration on Land	kg m ⁻² s ⁻¹	gridcell total	ra	monthly (daily)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	прр	monthly(daily)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	per pft	npp_ <pft></pft>	annual	
*Carbon Mass Flux into atmosphere due to Heterotrophic Respiration on Land	kg m ⁻² s ⁻¹	gridcell total	rh	monthly(daily)	
*Carbon Mass Flux into atmosphere due to total Carbon emissions from Fire	kg m ⁻² s ⁻¹	gridcell total	fireint	monthly(daily)	
*Carbon Mass Flux out of Atmosphere due to Net biome Production on Land (NBP)	kg m ⁻² s ⁻¹	gridcell total	ecoatmflux	monthly(daily)	This is the net mass flux of carbon between land and atmosphere calculated as photosynthesis MINUS the sum of plant and soil respiration, carbon fluxes from fire, harvest, grazing and land use change. Positive flux is into the land.
Structure					
*Leaf Area Index	1	per pft	lai_ <pft></pft>	annual	

*Leaf Area Index	1	gridcell average	lai	monthly (daily)			
*Plant Functional Type Grid Fraction	%	per gridcell	pft_ <pft></pft>	annual (or once if static)	The categories may differ from model to model, depending on their PFT definitions. This may include natural PFTs, anthropogenic PFTs, bare soil, lakes, urban areas, etc. Sum of all should equal the fraction of the gridcell that is land. Value between 0 and 100.		
Hydrological variables							
Total Evapo-Transpiration	kg m ⁻² s ⁻¹	gridcell total	evap monthly (daily)				
Evaporation from Canopy (interception)	kg m ⁻² s ⁻¹	gridcell total	intercep	monthly (daily)	the canopy evaporation+sublimation (if present in model).		
Water Evaporation from Soil	kg m ⁻² s ⁻¹	per gridcell	esoil	monthly (daily)	includes sublimation.		
Transpiration	kg m ⁻² s ⁻¹	per gridcell	trans	monthly (daily)			
*Runoff	kg m ⁻² s ⁻¹	per gridcell	qtot	monthly (daily**)	total (surface + subsurface) runoff (qtot = qs + qsb).		
					**for models also participating in the water sector		
					If daily resolution not possible, please provide monthly. If storage issues keep you from reporting daily data, please contact the ISIMIP team to discuss potential solutions.		

*Soil Moisture	kg m ⁻²	per gridcell	soilmoist	monthly (daily)	If possible, please provide soil moisture for all depth layers (i.e. 3D-field), and indicate depth in m. Otherwise, provide soil moisture of entire column.
Surface Runoff	kg m ⁻² s ⁻¹	per gridcell	qs	monthly (daily)	Total surface runoff leaving the land portion of the grid cell.
*Frozen soil moisture for each layer	kg m ⁻²	per gridcell	soilmoistfroz	monthly	Please provide soil moisture for all depth levels and indicate depth in m.
*Snow depth	m	per gridcell	snd	monthly	Grid cell mean depth of snowpack.
*Snow water equivalent	kg m ⁻²	per gridcell	swe	monthly	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.
*Annual maximum thaw depth	m	per gridcell	thawdepth	annual	calculated from daily thaw depths Please provide for purposes of permafrost sector.
Other outputs					
*Temperature of Soil	К	per gridcell	tsl	daily (mon)	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea".
					Also needs depths in meters. Daily would be great, but otherwise monthly would work.
Burnt Area Fraction	%	per gridcell	burntarea	monthly (daily)	Area percentage of grid cell that has burned at any time of the given day/month/year (for daily/monthly/annual resolution)

Albedo	1	per gridcell	albedo	monthly	average of pfts, snow cover, bare ground and water surfaces, range between 0-1
*N ₂ O emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	n2o	monthly	From land, not from industrial fossil fuel emissions and transport
*CH4 emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	ch4	monthly	From land, not from industrial fossil fuel emissions and transport

8 Regional forests

5

10

15

20

25

A number of sites has been selected in the COST Action PROFOUND for which a wide range of forest models can be rather easily initialized. To get access to this PROFOUND Database, please contact reyer@pik-potsdam.de.

- 1) Management: The modeling experiments mostly encompass managed forests. The standard management ("histsoc") during the historical period is the observed management as defined by the data available for each site (e.g. reduction in stem numbers) and, after the observations end, missing management information is to be substituted with generic future management guidelines from Table 16-Table 18. This future management (2005soc) corresponds best to "intensive even-aged forestry" as defined by Duncker et al. 2012. After harvesting the stands (c.f. Table 16 and Table 17), please proceed after harvest as your model usually does, e.g. plant the same tree species again or allow for regeneration of the same species according to the regeneration guidelines outlined in Table 18. A "natural reference run (nat)" without any management will help assessing the influence of forest management.
- 2) Calibration: Some of the models may require some kind of calibration or model development before they can contribute to ISIMIP. Such alterations of the model can influence the results of a model comparison and "model calibration" is understood differently by different modelers. All alterations to the model in the framework of this exercise should be reported in the model experiment documentation provided together with the upload of the simulations. Whenever the model calibration or development is driven by an improvement of the model after a comparison to data that were originally made available in ISIMIP for model evaluation, a part of those data should be kept aside for model evaluation and not used for calibration.
 - a. Model development needed to run a model at specific sites is welcomed and needs to be transparent/ properly documented (e.g. adjustment of phenology model to include chilling effects). This is also applicable for more general calibration (i.e. fixing parameters once but not changing afterwards) for example to include a new tree species in a model.
 - b. Manual or automatic site-specific "tuning" of species-specific and process-specific parameters should be avoided. The same "model" (i.e. also with the same parameter values) should be used in all simulations. If needed, any tuning needs to be documented in a transparent way and should be backed up by existing data (e.g. from TRY-database). If your model contains genetic processes where the change in parameters is part of the model processes, this is naturally part of "your model approach" and should be clearly spelled out as part of the documentation of your model. In this specific case, please contact the sectoral coordinators to discuss if it makes sense to include a "genetic adaptation" and a "parameter-fixed, control" run.
- 3) Reporting Period: Each phase of ISIMIP has its own reporting period but you should always start your reporting period for the first time step for which stand data is available (e.g. 1948 for the Peitz stand) and run your model until the last point in time where climate data is available.

8.1 Scenarios

Climate scenarios	
picontrol	Pre-industrial climate and 286ppm CO ₂ concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place. The regional forest simulation should start at the first point in time for which initialisation data is available (Table 17).
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO ₂ concentration from RCP2.6.
rcp60	Future climate and CO ₂ concentration from RCP6.0.
2005co2	CO2 concentration fixed at 2005 levels at 378.81ppm.
Human influences	scenarios
histsoc	Manage forests according to historical management guidelines without species change and keeping the same rotation length and thinning types. (see Table 17)
2005soc	Manage future forests according to present-day generic management guidelines without species change and keeping the same rotation length and thinning types (see Table 18-Table 20). This is equivalent to the "man" settings in the ISIMIP2a protocol
rcp26soc	Future forests are assumed to be managed by changing the tree species and the forest management towards maximizing mitigation benefits. Depending on the region and forest stand, this could mean focusing on species and management measures to maximize (1) the production of wood for bioenergy (highly productive species, short rotations), (2) in situ carbon stocks, or (3) production of harvested wood products with a long lifetime.
rcp60soc	Future forest are assumed to require adaptive management such as "assisted migration" where present-day forests are managed according to current practices until final harvest and then replaced by tree species that would be the natural vegetation under the projected climate change according to Hanewinkel et al. (2012).
2100rcp26soc	This scenario means managing future forests according to rcp26soc guidelines.
nosoc	No forest management (but nitrogen deposition should be included). If your model includes natural regeneration, please only regeneration those species previously present on the plot.

Table 16: ISIMIP2b scenarios for the regional forest simulations.

	Experiment	Input	Pre-industrial	Historical 1861-2005	Future 2006-2100	Extended future 2101-2299	
	no climate change, pre-industrial CO ₂	Climate & CO ₂		picontrol	picontrol	picontrol	
ı	varying LU & human influences up to 2005, fixed present-day management afterwards	Human & LU	not simulated	histsoc	2005soc	2005soc	
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26	
II	varying LU & human influences up to 2005, fixed present-day management afterwards	Human & LU	not simulated	histsoc	2005soc	2005soc	
	RCP2.6 climate, CO ₂ fixed after 2005	Climate & CO ₂			rcp26, 2005co2	rcp26, 2005co2	
lla	fixed present-day management after 2005	Human & LU	not simulated	Experiment II	2005soc	2005soc	
	RCP6.0 climate & CO ₂	Climate & CO ₂			rcp60		
	fixed present-day management after 2005	Human & LU	not simulated	Experiment II	2005soc	not simulated	
	no climate change, pre-industrial CO ₂	Climate & CO ₂			picontrol	picontrol	
IV	varying management (forest management for mitigation)	Human & LU	not simulated	Experiment I	rcp26soc	2100rcp26soc	
	no climate change, pre-industrial CO ₂	Climate & CO ₂			picontrol		
V	varying management (forest management for adaptation)	Human & LU	not simulated	Experiment I	rcp60soc		

	RCP2.6 climate & CO₂	Climate & CO ₂			rcp26	rcp26
VI	varying management (forest management for mitigation)	Human & LU	not simulated	Experiment II	rcp26soc	2100rcp26soc
	RCP6.0 climate & CO₂	Climate & CO ₂			rcp60	
VII	varying management (forest management for adaptation)	Human & LU	not simulated	Experiment II	rcp60soc	

The regional forest simulations as described above are carried out once using the ISIMIP2b climate of the grid cell in which the forest sites are located and once using locally bias-adjusted data based on locally observed meteorological data.

Table 17: Additional sector-specific simulations for the regional forest sector.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
la	no climate change, pre-industrial CO₂	Climate & CO ₂	not simulated	picontrol	picontrol	picontrol
	No forest management	Human & LU		nosoc	nosoc	nosoc
IIb	RCP2.6 climate & CO₂	Climate & CO ₂	not simulated	historical	rcp26	rcp26
	No forest management	Human & LU		nosoc	nosoc	nosoc
IIc	RCP2.6 climate, CO₂ fixed after 2005	Climate & CO ₂	not simulated	Experiment II	rcp26, 2005co2	rcp26, 2005co2
	No forest management	Human & LU		·	nosoc	nosoc
IIIa	RCP6.0 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂	Experiment I	Experiment II	rcp60, 2005co2	not simulated
	LU & human influences fixed at 1860 levels	Human & LU	,	,	2005soc	

IIIb	RCP6.0 climate & CO ₂	Climate & CO ₂	not simulated	Experiment II	гср60	not simulated
	No forest management	Human & LU		·	nosoc	
	no climate change, pre-industrial CO ₂	Climate &			picontrol	picontrol
IVa		CO ₂	not simulated	Experiment I		P

Table 18 Generic future management scenarios for the different tree species. For past simulations and depending on the model, modellers should use the observed stem numbers from the time series of stand and tree level data to mimick stand management. Future management should then be added according to the generic management guidelines outlined below. E.g., The last management for the Peitz site can be inferred from the tree data is taking place in 2011, hence the next management would then happen in 2026 according to **Table 17**.

Species	Thinning regime	Intensity [% of basal area]	Interval [yr]	Stand age for final harvest	Remarks
pisy	below	20	15		Pukkala et al. 1998; Fuerstenau et al. 2007; Gonzales et al-2005; Lasch et al. 2005
piab	below	30	15	120	Pape 2008; Pukkala et al. 1998; Hanewinkel and Pretzsch-2000; Sterba 1986; Laehde et al. 2010
fasy	above	30	15		Schuetz 2006; Mund et al. 2004; Hein and Dhote 2006; Cescatti and Piutti 1998
quro/qupe	above	15	15		Hein and Dhote 2006; Fuerstenau et al. 2007; Štefančík 2012; Kerr 1996; Gutsch et al. 2011
pipi	below	20	10	45	Management after Loustau et al. 2005 & Thivolle-Cazat et al. 2013

Table 19 Management schedules for the sites included in the simulation experiments. The first available data point is used for model initialization (Ini). Following data points are used to mimick historic management (HM). When no more observed data is available, the generic management rules from **Table 16** are being used (FM). harvest and planting are marked in bold. Note that depending on how models represent the planting/regeneration information in Table 20, the overall stand- age maybe slightly higher than in Table 18 (e.g. seedlings planted with an age of 2 in 2033 will be harvested at an age of 142 after 140 years of rotation in 2173).

Ini ΗМ FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 **FMX FMX FMX FMX FMX** Name Remarks

bily_kriz	1997	1998-2015 ^T	2030 ^T	2045 ^T	2060 ^T	2075 ^T	2090 ^T	2101 ^H	2102 ^P	2117 ^T		2222 ^H	2223 ^P	2238 ^T		
collelongo	1992	1997-2012 ^T	2027 ^T	2032 ^H	2033 ^P	2048 ^T	2063 ^T	2078 ^T	2093 ^T		2173 ^H	2174 ^P	2189 ^T			
hyytiala*	1995	1996-2011 ^T	2026 ^T	2041 ^T	2056 ^T	2071 ^T	2086 ^T	2101 ^H	2102 ^P	2117 ^T		2242 ^H	2243 ^P	2258 ^T		***
kroof*	1997	1999-2010 ^T	2025 ^T	2040 ^T	2055 ^T	2070 ^T	2085 ^T	2100 ^T	2101 ^H	2102 ^P	2117 ^T		2222 ^H	2223 ^P		****
le_bray	1986	1987-2009 ^T	2015 ^H	2016 ^P	2026 ^T	2036 ^T	2046 ^T	2056 ^T	2061 ^H	2062 ^P	2072 ^T		2107 ^H	2108 ^P	2118 ^T	
Peitz	1948**	1952-2011 ^T	2026 ^T	2040 ^H	2041 ^P	2056 ^T	2071 ^T	2086 ^T	2101 ^T		2181 ^H	2182 ^P	2197 ^T			
solling_beech*	1967	1968-2014 ^T	2015 ^H	2016 ^P	2031 ^T	2046 ^T	2061 ^T	2076 ^T	2091 ^T		2156 ^H	2157 ^P	2172 ^T		2297 ^H	
solling_spruce*	1967	1968-2014 ^T	2024 ^H	2025 ^P	2040 ^T	2055 ^T	2070 ^T	2085 ^T	2100 ^T		2145 ^H	2146 ^P	2161 ^T		2266 ^H	
Soro	1944**	1945-2005 ^T	2020 ^T	2035 ^T	2050 ^T	2061 ^H	2062 ^P	2077 ^T	2092 ^T		2202 ^H	2203 ^P	2218 ^T			

Ini = Initialization data, HM = Historic Management, FM = Future Management, T=Thinning, H= Harvest, P=Planting, *=maximum age extended a bit to match local management during observed period or avoid harvesting just before the end of the simulation, **= the GCM data only starts in 1950, hence for future runs (Experiment 2a), you have to initialize these forests at the first time step after 1949 (i.e. 1952 for Peitz and 1950 for Soro). For the historical validation runs (Experiment 1a) you can start with the first available stand initialization.***= Only simulate pine and spruce (no hard-woods) and regenerate as pure pine stand.

****= Harvest all species at the same time (i.e. 120 years).

Table 20 Planting information for the sites included in the simulation experiments. DBH is defined as diameter at breast height of 1.30m. Thenumbers in brackest indicate plausible ranges.

Name	Density ha ⁻¹	Age years	Height m	DBH cm	age when DBH is reached years	Remarks
Bily Kriz	4500	4	0.5	na	9	Historical planting density was 5000/ha but current practices are 4500/ha only
Collelongo	10000	4	1.3	0.1	4	Only a rough approximation, usually natural regeneration is the regeneration method.
Hyytälä	2250 (2000- 2500)	2	0.25 (0.2-0.3)	na	6 (5-7)	
KROOF (beech)	6000 (5000- 7000)	2	0.6 (0.5-0.7)	0.5	5	The planting density is for single-species stands, hence when regenerating the 2-species-stand KROOF, the planting density of each species should be halved
KROOF (spruce)	2250 (2000- 2500)	2	0.35 (0.3-0.4)	0.5	7	See above
LeBray	1250 (1000- 14000)	1	0.2 (0.1-0.25)	na	3 (2-5)	These are the current practices (De Lary, 2015) and should be used for future regeneration. Historically, the site was seeded with 3000-5000 seedlings per ha and then cleared once or twice to reach a density of 1250/ha at 7-year old when seedlings reach the size for DBH recruitment. → modelers could mimic this by "planting" trees with DBH of 7.5cm and 6m height in 1978 with a density of 1250 trees/ha
Peitz	9000 (8000- 10000)	2	0.175 (0.1- 0.25)	0.1	5	The "age when DBH is reached = 5" is an estimate
Solling_beech	6000 (5000- 7000)	2	0.6 (0.5-0.7)	0.5	5	
Solling_spruc e	2250 (2000- 2500)	2	0.35 (0.3-0.4)	0.5	7	
Soro	6000	4	0.82	na	6	

8.2 Output data

Table 21 Variables to be reported by forest models.

Long name	units		output variable name	resolution	comment
Essential outputs					
Mean DBH	cm	per species and stand total	dbh_ <species total=""></species>	annual	
Mean DBH of 100 highest trees	cm	stand total	dbh_domhei	annual	100 highest trees per hectare.
Stand Height	m	per species and stand total	height_ <species total=""></species>	annual	For models including natural regeneration this variable may not make sense, please report dom_height
Dominant Height	m	stand total	dom_height	annual	Mean height of the 100 highest trees per hectare.
Stand Density	ha ⁻¹	per species and stand total	density_ <species total=""></species>	annual	As trees per hectare
Basal Area	m ² ha ⁻¹	per species and stand total	ba_ <species total=""></species>	annual	
Volume of Dead Trees	m ³ ha ⁻¹	per species and stand total	mort_ <species total=""></species>	annual	
Harvest by dbh- class	m ³ ha ⁻¹	per species and stand total and dbh- class	harv_ <species total="">_<dbhclass otal="" t=""></dbhclass></species>	annual	
Remaining stem number after disturbance and management by dbh class	ha ⁻¹	per species and stand total	stemno_ <species total="">_ <dbhclass total=""></dbhclass></species>	annual	As trees per hectare, dbhclass_name as specific in Table 20 .

Stand Volume	m³ ha ⁻¹	per species and stand total	vol_ <species total=""></species>	annual	
Carbon Mass in Vegetation biomass (incl. Soil veg.?)	kg m ⁻²	per species and stand total	cveg_ <species total=""></species>	annual	As kg carbon*m ⁻²
Carbon Mass in Litter Pool	kg m ⁻²	per species and stand total	clitter_ <species total=""></species>	annual	As kg carbon*m ⁻² , Info for each individual pool.
Carbon Mass in Soil Pool	kg m ⁻²	per species and stand total	csoil_ <species total=""></species>	annual	As kg carbon*m ⁻² , Info for each individual soil layer
Tree age by dbh class	yr	per species and stand total	age_ <species total="">_<dbhclass to<br="">tal></dbhclass></species>	annual	dbhclass_name as specified in Table 20 .
Gross Primary Production	kg m ⁻² s ⁻¹	per species and stand total	gpp_ <species total=""></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Net Primary Production	kg m ⁻² s ⁻¹	per species and stand total	npp_ <species total=""></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Autotrophic (Plant) Respiration	kg m ⁻² s ⁻¹	per species and stand total	ra_ <species total=""></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Heterotrophic Respiration	kg m ⁻² s ⁻¹	stand total	rh_< total>	daily	As kg carbon*m ⁻² *s ⁻¹
Net Ecosystem Exchange	kg m ⁻² s ⁻¹	per stand	nee_ <total></total>	daily	As kg carbon*m ⁻² *s ⁻¹
Mean Annual Increment	m³ ha ⁻¹	per species and stand total	mai_ <species total=""></species>	annual	
Fraction of absorbed photosynthetically active radiation	%	per species and stand total	fapar_ <species total=""></species>	daily	Value between 0 and 100.

Leaf Area Index	m ² m ⁻²	per species and stand total	lai_ <species total=""></species>	monthly	
Species composition	%	per ha	species_ <species></species>	annual (or once if static)	As % of basal area; the categories may differ from model to model, depending on their species and stand definitions.
Total Evapotranspiratio n	kg m ⁻² s ⁻¹	stand total	evap_< total>	daily	sum of transpiration, evaporation, interception and sublimation. (=intercept + esoil + trans)
Evaporation from Canopy (interception)	kg m ⁻² s ⁻¹	per species and stand total	intercept_ <species total=""></species>	daily	the canopy evaporation+ sublimation (if present in model).
Water Evaporation from Soil	kg m ⁻² s ⁻¹	per stand	esoil	daily	includes sublimation.
Transpiration	kg m ⁻² s ⁻¹	per species and stand total	trans_ <species total=""></species>	daily	
Soil Moisture	kg m ⁻²	per stand	soilmoist	daily	If possible, please provide soil moisture for all depth layers (i.e. 3D-field), and indicate depth in m. Otherwise, provide soil moisture of entire column.
Optional outputs					
Removed stem numbers by size class by natural mortality	ha ⁻¹	per species and stand total	mortstemno_ <species total="">_<db hclass="" total=""></db></species>	annual	As trees per hectare, dbhclass_name as specific in Table 20 .

Removed stem numbers by size class by management	ha ⁻¹	per species and stand total	harvstemno_ <species total="">_<dbh class/total></dbh </species>	annual	As trees per hectare, dbhclass_name as specific in Table 20 .
Volume of disturbance damage	m ³ ha ⁻¹	per species and stand total	dist_ <dist_name></dist_name>	annual	dist_name as specific in Table 20 .
Nitrogen of annual Litter	g m ⁻² a ⁻¹	per species and stand total	nlit_ <species total=""></species>	annual	As g Nitrogen m ⁻² a ⁻¹
Nitrogen in Soil	g m ⁻² a ⁻¹	stand total	nsoil_ <total></total>	annual	As g Nitrogen m ⁻² a ⁻¹
Net Primary Production allocated to leaf biomass	kg m ⁻² s ⁻¹	per species and stand total	npp_landleaf_ <species></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Net Primary Production allocated to fine root biomass	kg m ⁻² s ⁻¹	per species and stand total	npp_landroot_ <species></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Net Primary Production allocated to above ground wood biomass	kg m ⁻² s ⁻¹	per species and stand total	npp_abovegroundwood_ <species></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Net Primary Production allocated to below ground wood biomass	kg m ⁻² s ⁻¹	per species and stand total	npp_belowgroundwood_ <species></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Root autotrophic respiration	kg m ⁻² s ⁻¹	per species and stand total	rr_ <species total=""></species>	daily	As kg carbon*m ⁻² *s ⁻¹
Carbon Mass in Leaves	kg m ⁻²	per species and stand total	cleaf_ <species></species>	annual	
Carbon Mass in Wood	kg m ⁻²	per species and stand total	cwood_ <species></species>	annual	including sapwood and hardwood

Carbon Mass in Roots	kg m ⁻²	per species and stand total	croot_ <species></species>	annual	including fine and coarse roots
Temperature of Soil	К	per stand	tsl	daily	Temperature of each soil layer

Table 22 Codes for species, disturbance names and dbh classes as used in protocol (species, dist_name, dbhclass).

Long name	Short name
Fagus sylvatica	fasy
Quercus robur	quro
Quercus petraea	qupe 5
Pinus sylvestris	pisy
Picea abies	piab
Pinus pinaster	pipi
Larix decidua	lade
Acer platanoides	acpl
Eucalyptus globulus	eugl 10
Betula pendula	bepe
Betula pubescens	bepu
Robinia pseudoacacia	rops
Fraxinus excelsior	frex
Populus nigra	poni 15
Sorbus aucuparia	soau
hard woods	hawo
fire	fi
wind	wi
insects	ins
drought	dr 20
grazing	graz
diseases	dis
DBH_class_ <x>-<x+5>*</x+5></x>	dbh_c <x></x>
DBH_class_>140*	dbh_c140

^{*}the boundaries of the dbh classes should interpreted as follows: dbh_class_0-5 = 0 to<5 cm; dbh_class_5-10 =5 to<10 cm, etc.... the dbh class dbh_c140 includes all trees of 140cm dbh and larger.

9 Permafrost

9.1 Scenarios

The simulation scenarios for models only participating as permafrost models are described below. Assuming that for the relevant regions "other human influences" only play a minor role, i.e. the regional simulations can be done as "naturalized" runs (nosoc). Results from permafrost modules embedded in global biomes models should be reported for the biomes model simulations specified in Section 6 and the extension beyond 2299 described below.

Climate & CO ₂ scer	Climate & CO ₂ scenarios				
picontrol	Pre-industrial climate and 286ppm CO ₂ concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.				
historical	Historical climate and CO ₂ concentration.				
rcp26	Future climate and CO ₂ concentration from RCP2.6				
rcp60	Future climate and CO ₂ concentration from RCP6.0				
2299rcp26	Repeating climate between 2270 and 2299 for additional 200 years up to 2500 (or equilibrium if possible), CO_2 fixed at year 2299 levels				
2005co2	Fixed year 2005 CO₂ concentration				
Human influence & land-use scenarios					
nosoc	No human influences				

 Table 23
 ISIMIP2b scenario specification for the permafrost simulations.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299	Beyond 2299
ı	no climate change, pre- industrial CO ₂	Climate & CO ₂	picontrol	not simulated	not simulated	not simulated	not simulated
	no other human influences	Human & LU	nosoc				
	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	historical	rcp26	rcp26	2299rcp26
	no other human influences	Human & LU	Experiment	nosoc	nosoc	nosoc	nosoc
lla	RCP6.0 climate, CO ₂ varying until 2005, then fixed at 2005 levels thereafter	Climate & CO ₂	Experiment I	Experiment II	rcp26, 2005co2	rcp26, 2005co2	2299rcp26, 2005co2
	no other human influences	Human & LU			nosoc	nosoc	nosoc
	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	гср60	not simulated	not simulated
	no other human influences	Human & LU	Ехренненст	Experiment ii	nosoc	Simulated	not simulated

9.2 Output data

Table 24 Variables to be reported by permafrost models.

Long name	Units		Output variable name	Resolution	Comment
Essential outputs					
Temperature of Soil	К	per gridcell	tsl	daily (monthly)	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea". THIS IS THE MOST IMPORTANT VARIABLE. Also need depths in meters. Daily would be great, but otherwise monthly would work.
Pools (as Biomes out	put Table)				
Carbon Mass in Vegetation biomass	kg m ⁻²	per pft and gridcell total	cveg_ <pft></pft>	annual	Gridcell total cveg is essential. Per PFT information is desirable.
Carbon Mass in Litter Pool	kg m ⁻²	per gridcell total	clitter	annual	Info for each individual pool.
Carbon Mass in Soil Pool	kg m ⁻²	per gridcell total	csoil	annual	Info for each individual pool.
Fluxes (as Biomes ou	tput Table)				
Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	дрр	monthly (daily)	
Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	per pft	gpp_ <pft></pft>	annual	
Carbon Mass Flux into atmosphere	kg m ⁻² s ⁻¹	gridcell	ra	monthly (daily)	

due to Autotrophic		total				
(Plant) Respiration on Land						
Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	прр	monthly (daily)		
Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	per pft	npp_ <pft></pft>	annual		
Carbon Mass Flux into atmosphere due to Heterotrophic Respiration on Land	kg m ⁻² s ⁻¹	gridcell total	rh	monthly (daily)		
Carbon Mass Flux into atmosphere due to total Carbon emissions from Fire	kg m ⁻² s ⁻¹	gridcell total	fireint	monthly (daily)		
Carbon Mass Flux out of Atmosphere due to Net biome Production on Land (NBP)	kg m ⁻² s ⁻¹	gridcell total	ecoatmflux	monthly (daily)	This is the net mass flux of carbon between land and atmosphere calculated as photosynthesis MINUS the sum of plant and soil respiration, carbon fluxes from fire, harvest, grazing and land-use change. Positive flux is into the land.	
Structure [as Biomes	output Tabl	e]				
Leaf Area Index	1	per pft	lai_ <pft></pft>	annual		
Leaf Area Index	1	gridcell average	lai_ <pft></pft>	monthly (daily)		
Plant Functional Type Grid Fraction	%	per gridcell	pft_ <pft></pft>	annual (or once if static)	The categories may differ from model to model, depending on their PFT definitions. This may include natural PFTs, anthropogenic PFTs, bare soil, lakes, urban areas, etc Sum of all should equal the fraction of the gridcell that is land.	
Hydrological variable	Hydrological variables [as per Biomes output Table]					

Runoff	kg m ⁻² s ⁻¹	per gridcell	qtot	daily** (monthly)	total (surface + subsurface) runoff (qtot = qs + qsb). If daily resolution not possible, please provide monthly. If storage issues keep you from reporting daily data, please contact the ISI-MIP team to discuss potential solutions. **For those models also participating in the water simulations
Soil moisture	kg m ⁻²	per grid cell	soilmoist	monthly	please provide soil moisture for all depth layers (i.e. 3D-field), and indicate depth in m.
Frozen soil moisture for each layer	kg m ⁻²	per gridcell	soilmoistfroz	monthly	Please provide frozen soil moisture for all depth levels and indicate depth in m.
Snow depth	m	per gridcell	snd	monthly	Grid cell mean depth of snowpack.
Snow water equivalent	kg m ⁻²	per gridcell	swe	monthly	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.
Annual maximum thaw depth	m	per gridcell	thawdepth	annual	calculated from daily thaw depths
Other outputs					
Burnt Area Fraction	%	per gridcell	burntarea	monthly (daily)	fraction of entire grid cell that is covered by burnt vegetation
N₂O emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	n2o	monthly	From land, not from industrial fossil fuel emissions and transport
CH4 emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	ch4	monthly	From land, not from industrial fossil fuel emissions and transport

10 Global crop simulations

10.1 Scenarios

Crop-model simulations should be provided as pure crop runs (i.e. assuming that each crop grows everywhere), so that future LU patterns can be applied in post-processing ensuring maximum flexibility. Simulations should be provided for the four major crops (wheat, maize, soy, and rice). For each crop there should be a full irrigation run (firr) and a no-irrigation run (noirr).

Those models that cannot simulate time varying management/human impacts/fertilizer input should keep these fixed at year 2005 levels throughout the simulations ("2005soc" scenario in Group 1 (dashed line in **Figure 1**) and "2005soc" scenario in Group 2). They only need to run the first preindustrial period of Experiment I (1661-1860). Group 3 runs only refer to models that are able to represent future changes in human management (varying crop varieties or fertilizer input).

Climate & CO ₂ s	cenarios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.
historical	Historical climate and CO₂ concentration.
rcp26	Future climate and CO₂ concentration from RCP2.6
rcp60	Future climate and CO ₂ concentration from RCP6.0
2005co2	Fixed year 2005 levels of CO₂ at 378.81ppm.
Human influence	e & land-use scenarios
1860soc	Pre-industrial levels of fertilizer input.
histsoc	Varying historical fertilizer input.
2005soc	Fixed year 2005 management
rcp26soc	Varying level of fertilizer input and varying crop varieties associated with SSP2 and RCP2.6
rcp60soc	Varying level of fertilizer input and varying crop varieties associated with SSP2 and RCP6.0
2100rcp26soc	Fertilizer input and crop varieties fixed at year 2100.

 Table 25 ISIMIP2b scenarios for global crop simulations. *Option 2 only if option 1 not possible.

	Experiment	Input	Pre-industrial	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
	no climate change, pre-industrial CO₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
ı	varying management until 2005, then fixed at 2005 levels thereafter	Human & LU	Option 1*: 1860soc	Option 1*: histsoc	2005soc	2005soc
			Option 2*: 2005soc	Option 2*: 2005soc		
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26
ш	varying management until 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Option 1*: histsoc	- 2005soc	2005soc
				Option 2*: 2005soc		
lla	RCP2.6 climate, CO_2 after 2005 fixed at 2005 levels	Climate	Experiment I	Experiment II	rcp26, 2005co2	rcp26, 2005co2
IIIa	varying management until 2005, then fixed at 2005 levels thereafter	Human & LU			2005soc	2005soc
	RCP6.0 climate & CO₂	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated
III	varying management until 2005, then fixed at 2005 levels thereafter	Human & LU			2005soc	
	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I	picontrol	picontrol
IV	varying management up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU			rcp26soc	2100rcp26soc
\	no climate change, pre-industrial CO₂	Climate & CO ₂	Experiment I	Experiment II	picontrol	not simulated
V	varying management (RCP6.0)	Human & LU			rcp60soc	
VI	RCP2.6 climate & CO₂	Climate & CO ₂	Experiment I	Experiment II	rcp26	rcp26

	varying management up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU			rcp26soc	2100rcp26soc
VII	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Evnoriment II	rcp60	
VII	varying management (RCP6.0)	Human & LU		Experiment II	rcp26soc	

10.2 Output data

Table 26 Variables to be reported by crop models

Variable	Variable name	Resolution	Unit	Comments		
Key model outputs						
Crop yields	yield_ <crop></crop>	annual (0.5°x0.5°)	dry matter (t ha ⁻¹ yr ⁻¹)			
Irrigation water withdrawal (assuming unlimited water supply)	pirrww_ <crop></crop>	annual (0.5°x0.5°)	mm yr ⁻¹	Irrigation water withdrawn in case of optimal irrigation (in addition to rainfall), assuming no losses in conveyance and application.		
Key diagnostic variables						
Actual evapotranspiration	aet_ <crop></crop>	annual (0.5°x0.5°)	mm yr ⁻¹	portion of all water (including rain) that is evapo-transpired, the water amount should be accumulated over the entire growing period (not the calendar year)		
Nitrogen application rate	initr_ <crop></crop>	annual (0.5°x0.5°)	kg ha ⁻¹ yr ⁻¹	Total nitrogen application rate. If organic and inorganic amendments are applied, rate should be reported as inorganic nitrogen equivalent (ignoring residues).		
Actual planting dates	plant- day_ <crop></crop>	annual (0.5°x0.5°)	Day of year	Julian dates		

Actual planting year	plant- year_ <crop></crop>	annual (0.5°x0.5°)	Year of planting	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of planting that is also easy to follow for potential users from outside the project.
Anthesis dates	anth- day_ <crop></crop>	annual (0.5°x0.5°)	Day of year of anthesis	Attention: This has changed compared to the ISIMIP2a reporting where we asked for the "day from planting date". Together with the year of anthesis added to the list of outputs (see below) it allows for clear identification of anthesis that is also easy to follow for potential users from outside the project.
Year of anthesis	anth- year_ <crop></crop>	annual (0.5°x0.5°)	year of anthesis	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of anthesis that is also easy to follow for potential users from outside the project.
Maturity dates	maty- day_ <crop></crop>	annual (0.5°x0.5°)	Day of year of maturity	Attention: This has changed compared to the ISIMIP2a reporting where we asked for the "day from planting date". Together with the year of maturity added to the list of outputs (see below) it allows for clear identification of maturity that is also easy to follow for potential users from outside the project.
Year of maturity	maty- year_ <crop></crop>	annual (0.5°x0.5°)	year of maturity	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of maturity that is also easy to follow for potential users from outside the project.

Biomass yields	biom_ <crop></crop>	annual (0.5°x0.5°)	Dry matter (t ha ⁻¹ yr ⁻¹)	
Soil carbon emissions	sco2_ <crop></crop>	annual (0.5°x0.5°)	kg C ha ⁻¹	Ideally should be modeled with realistic land-use history and initial carbon pools. Subject to extra study.
Nitrous oxide emissions	sn2o_ <crop></crop>	annual (0.5°x0.5°)	kg N ₂ O-N ha ⁻¹	Ideally should be modeled with realistic land-use history and initial carbon pools. Subject to extra study.

11 Energy

11.1 Scenarios

Those models that do not account for varying societal conditions (population, GDP, etc.) should keep these fixed at year 2005 levels throughout the simulations (2005soc scenario in Group 1 and Group 2). However, the "present-day" representation of the installed renewable power generation should reflect 2015 conditions, since the installed power in 2005 was still very restricted and scattered. Models that only account for the weather-induced changes in power generation, without representing population or GDP effects, should name these scenarios 2015soc. However, as soon as other socio-economic drivers are considered and fixed at 2005 levels, the scenarios should be called "2005soc", even though they represent a mixture of both conditions. Those models that do not account for varying societal conditions only need to run the first pre-industrial period of Experiment I (1661-1860, see option 2 of Experiment I below). The models focusing on the simulation of future projections (e.g. some IAMs) need to run experiment variations associated only with the periods post-2006. Group 3 runs are only relevant for models that are able to represent future changes in societal conditions.

Climate & CO ₂ scenarios					
picontrol	Pre-industrial climate and 286ppm $\rm CO_2$ concentration. The climat data for the entire period (1661-2299) are unique – no (or little recycling of data has taken place.				
historical	Historical climate and CO ₂ concentration.				
rcp26	Future climate and CO ₂ concentration from RCP2.6				
гср60	Future climate and CO ₂ concentration from RCP6.0				
Human influence & land-use scenarios					
1860soc	Pre-industrial society				
histsoc	Varying society				
2005soc	Representation of fixed year 2005 society				
2015soc	Representation of fixed year 2015 society				
rcp26soc	Varying society according to SSP2+RCP2.6				
rcp60soc	Varying society according to SSP2+RCP6.0				
2100rcp26soc	Representation of fixed year 2100 society according to the last year of rcp26soc.				

Table 27 ISIMIP2b scenarios for energy sector simulations.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
ı	varying society up to 2005, then fixed at	Human & LU	Option 1: 1860soc	Option 1: histsoc	2005soc	2005soc
	2005 levels thereafter	Human & LO	Option 2*: 2005soc	Option 2*: 2005soc	2005500	2005800
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
lb	varying society up to 2015, then fixed at	Human & III	Option 1: 1860soc	Option 1: histsoc	2015soc	2015soc
	2015 levels thereafter	Human & LU	Option 2*: 2015soc	Option 2*: 2015soc	2015500	
	RCP2.6 climate & CO ₂	Climate& CO ₂		historical	rcp26	rcp26
II	varying society up to 2005, then fixed at 2005 levels thereafter	LU etc.	Experiment I	Option 1: histsoc	2005soc	2005 soc
				Option 2*: 2005soc	2003300	
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26
IIb	varying society up to 2015, then fixed at	Human & LU	Experiment la	Option 1: histsoc	2015soc	2015soc
	2015 levels thereafter			Option 2*: 2015soc	2013300	
	RCP6.0 climate & CO ₂	Climate & CO ₂			rcp60	
III	varying society up to 2005, then fixed at 2005 levels thereafter	LU etc.	Experiment I	Experiment II	2005soc	not simulated
IIIb	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment la	Experiment IIa	гср60	not simulated

	varying society up to 2015, then fixed at 2015 levels thereafter	Human & LU			2015soc		
	no climate change, pre-industrial CO ₂	Climate& CO ₂			picontrol	picontrol	
IV	varying society up to 2100 (SSP2+RCP2.6), then fixed at 2100 levels thereafter	LU etc.	Experiment I	Experiment I	rcp26soc	2100rcp26soc	
	no climate change, pre-industrial CO ₂	Climate			picontrol		
V	varying society up to 2100 (SSP2+RCP6.0), then fixed at 2100 levels thereafter	LU etc.	Experiment I	Experiment I Experiment II		not simulated	
	RCP6.0 climate & CO ₂	Climate			rcp26	rcp26	
VI	varying society up to 2100 (SSP2+RCP2.6), then fixed at 2100 levels thereafter	LU etc.	Experiment I	Experiment II	rcp26soc	2100rcp26soc	
VII	RCP6.0 climate & CO ₂	Climate	[vacriment]	Evporiment !!	rcp60		
VII	varying society up (SSP2+RCP6.0)	LU etc.	Experiment I	Experiment II	rcp26soc		

Table 28 Variables to be reported by energy models

Variable	Variable name	Unit	Comments
Energy Demand			
Total energy demand	ed_tot	EJ/time step	
Energy demand residential	ed_res	EJ/time step	
Energy demand industry	ed_ind	EJ/time step	

Energy demand transport	ed_trans	EJ/time step	
Energy Supply			
Solar power	p_sol	EJ/time step	
Wind power	p_wind	EJ/time step	
Gross hydropower	p_hydgross	EJ/time step	
Actual hydropower	p_hydact	EJ/time step	
Thermoelectric power total	p_therm	EJ/time step	Including nuclear, biomass, fossil-fueled power plants
Biomass production	prod_biom	EJ/time step	
Total energy extraction	extr_tot	EJ/time step	Sum of coal/shale/gas extraction
Economics			
Primary energy costs		US\$2005/GJ	
Final energy costs		US\$2005/GJ	Sum of average cost of electricity of all power plant technologies
Solar power costs		US\$2005/GJ	
Wind power costs		US\$2005/GJ	
Hydropower costs		US\$2005/GJ	
Thermoelectric power costs		US\$2005/GJ	Sum of average cost of electricity of coal/gas/nuclear/biomass-fueled plants
Adaptation costs		US\$2005/GJ	
Electricity prices		US\$2005/GJ	

12 Health (Temperature-related mortality)

12.1 11.1 Scenarios

The following protocol has been designed for contributions on temperature-related mortality (TRM). There are no restrictions regarding the type of empirical models (GAMs, DLNMs, log-linear, simple exponential etc.) to be used as long as the methodology has been documented in previous peer-reviewed publications. It also does not matter at which spatial scale the model operates (city-scale, regional, national, global), with the possible restrictions stemming from the input data provided.

Group 3 runs (experiments IV to VII, blue cells in Table 23) only refer to models that are able to represent future changes in societal conditions (demographic changes, shifts in mortality baselines, adaptation/acclimatization).

Climate					
picontrol	Pre-industrial climate (year specific for the entire period 1661-2299)				
historical	Historical climate				
rcp26	Future climate from RCP2.6				
rcp60	Future climate from RCP6.0				
Human influence					
2005soc	Representation of fixed year 2005 society:				
	 Present-day exposure-response functions Present-day mortality baselines (average from observational records, or from grid based 2005 mortality data (SSP2) 2005 population data from your observational records, or from ISIMIP grid based population data (SSP2) 				
ssp2soc	Varying society according to SSP2 – no adaptation				
	 Present-day exposure-response functions Mortality baselines according to SSP2^a Population data according to SSP2^b 				
2100ssp2soc	Society in 2100 according to SSP2 – no adaptation				
	As ssp2soc but mortality and population data fixed at 2100 levels				
ssp2soc_adapt	Varying society according to SSP2 – with adaptation				
	 changing exposure-response relationships according to default adaptation assumptions^c mortality baselines and population according to SSP2 				

- ^a It is also possible to neglect shifts in mortality baselines and only consider population shifts in this experiment; if changes in mortality baselines are accounted for, scaling from SSP2 national projections to city-scale/regional scale should be done as for population data (see ^b)
- ^b Use grid-based or national population data for 2005-2100 in 5-year intervals for 5-year age groups (0-4,5-9,...,100+), split between urban and rural population from SSP database. For mortality models working on city scale, projected national urban population growth rates should be applied to 2005 city populations (assuming that city-scale projections scale directly to nation-scale projections)
 - ^c Uncertainty on acclimatization/adaptation is large. Based on your available data choose the most plausible approach to incorporate acclimatization into your exposure-response functions (e.g., shift MMT, shift slope); this approach will have to be documented in detail

Additional Notes:

10

Definition of attributable mortality: Where applicable attributable mortality should be defined as e.g., in Gasparrini & Leone (2014); Here attributable refers to mortality attributable to excursion of ambient temperature from MMT.

Definition of climate change impacts: Additional deaths due to climate change will be derived as the difference between attributable mortality estimates based on the pre-industrial control (picontrol) and climate change scenario runs (rcp26, rcp60) or as difference between present-day reference (2010-2019) and future decades.

Local bias-correction of climate time-series: For TRM models working on a point scale (e.g., city scale) or small regional scale, a downscaling and bias correction to the local observational climate time-series will be undertaken (using ISIMIP2b bias-correction method). Other support regarding preparation of climate input data (aggregation to specific regions, conversion from netcdf to txt etc.) might be provided on demand.

Contact person: Veronika Huber: huber@pik-potsdam.de

Table 29 ISIMIP2b scenarios for temperature-related mortality simulations. Option 2* only if option 1 not possible.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
	no climate change	Climate	picontrol	picontrol	picontrol	picontrol
ı	varying society up to 2005, then fixed at 2005 levels thereafter, no adaptation	Human	Option 1: 1860soc	Option 1:	2005soc	2005soc
	society fixed at 2005 levels, no adaptation		Option 2*: 2005soc	Option 2*: 2005soc		
	RCP2.6 climate	Climate		historical	rcp26	rcp26
ш	varying society up to 2005, then fixed at 2005 levels thereafter, no adaptation	Human	Experiment I	Option 1*: histsoc	2005soc	2005soc
	society fixed at 2005 levels, no adaptation			Option 2*: 2005soc		
	RCP6.0 climate	Climate	Experiment I		rcp60	
III	society fixed at 2005 levels, no adaptation	Human		Experiment II	2005soc	not simulated
	no climate change	Climate			picontrol	picontrol
IV	varying society (SSP2) up to 2100, then fixed at 2100 levels thereafter, no adaptation	Human	Experiment I	Experiment II	ssp2soc	2100ssp2soc
V	Not simulated					
	RCP2.6 climate	Climate			rcp26	rcp26
VI	varying society (SSP2) up to 2100, then fixed at 2100 levels thereafter, no adaptation	Human	Experiment I	Experiment II	ssp2soc	2100ssp2soc

	RCP2.6 climate				гср26	
VIa	varying society (SSP2) with adaptation	Human	Experiment I	Experiment II	ssp2soc_adapt	not simulated
	RCP6.0 climate	Climate			rcp60	
VII	varying society (SSP2), no adaptation	Human	Experiment I	Experiment II	ssp2soc	not simulated
	RCP6.0 climate	Climate			rcp60	
VIIa	varying society (SSP2), with adaptation	Human	Experiment I	Experiment II	ssp2soc_adapt	not simulated

Table 30 Variables to be reported by TRM models

Note: The variable name should specify the age group x for which mortality estimates are supplied:

 $x = _all, _65minus, _65plus, etc.$

Long name	Units	Variable name	Spatial resolution	Tempo ral resoluti on	Comments
Number of deaths attributable to cold in age group x	Total number of deaths	an_tot_cold_x	Per city/region /grid cell	daily	Temperature below minimum mortality temperature (MMT)
Number of deaths attributable to heat in age group x	Total number of deaths	an_tot_heat_x	Per city/region /grid cell	daily	Temperature above MMT
Death rate attributable to cold in age group x	Deaths per 100 000 population	an_rate_cold_x	Per city/region /grid cell	daily	Temperature below MMT
Death rate attributable to heat in age group x	Deaths per 100 000 population	an_rate_heat_x	Per city/region /grid cell	daily	Temperature above MMT
Attributable fraction (cold) in age group x	%	af_cold_x	Per city/region /grid cell	daily	Temperature below MMT
Attributable fraction (heat) in age group x	%	af_heat_x	Per city/region /grid cell	daily	Temperature above MMT

13 Coastal Infrastructure

13.1 Scenarios

15

20

Climate change affects coastal infrastructure through rising mean and extreme sea levels, causing damages through temporary flooding and losses due to permanent submergence of land. To assess these impacts, climate scenarios have to be complemented by sea-level-rise projections. While the information about thermal expansion and dynamical changes of sea level is provided by the four GCMs considered, contributions from mountain glaciers and ice sheets have to be added from other sources, which introduces a further dimension of uncertainty (see section 5). The uncertainty range introduced is substantial and a least on equal footing with the climate model and scenario uncertainty (e.g. Kopp et al. 2014). To reflect this aspect we include an additional scenario dimension in the scenario design for this sector and sample this by providing projections for the median and 5th and 95th percentiles of the contributions from ice sheets and mountain glaciers to sea-level rise. One aspect specific to the coastal-infrastructure sector is that impacts are extremely non-linear in and sensitive to adaptation. Impacts without adaptation are 2-3 orders of magnitudes higher than those with adaptation (Hinkel et al. 2014). This leads to the circumstance that the regions with the highest infrastructure damages under the scenarios without adaptation are actually the regions least vulnerable to sea-level rise, because it is highly cost-efficient and standard practise to protect those regions against sea-level rise. Scenarios including adaptation are therefore added to the protocol to provide projections of climate change risks including adaptation potentials.

Those models that do not account for varying societal conditions (population, GDP, protection levels etc.) should keep these fixed at year 2005 levels throughout the simulations (2005soc scenario in Group 1 (dashed line in Figure 1 a) + rcp26soc or rcp60soc scenario in Group 2). They only need to run the first pre-industrial period of Experiment I (1661-1860). Group 3 runs only refer to models that are able to represent future changes in societal conditions.

Climate & CO ₂ s	Climate & CO ₂ scenarios			
picontrol	Pre-industrial climate (year specific for the entire period 1661-2299)			
historical	Historical climate and CO₂ concentration.			
rcp26	Future climate and CO ₂ concentration from RCP2.6			
rcp60	Future climate and CO₂ concentration from RCP6.0			
Human influence	ce & land-use scenarios			
1860soc	Pre-industrial society and protection			
2005soc	Representation of fixed year 2005 society and protection			
ssp2soc	Varying society and protection according to SSP2			
2100ssp2soc	Representation of fixed year 2100 society and protection according to SSP2			

Table 31 ISIMIP2b scenario specification for the simulations of impacts on coastal infrastructure.

	Experiment	Input	Pre-industrial	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299	
	no climate change, pre- industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol	
ı	varying society & protection up to 2005,		Option 1:1860soc	Option 1: histsoc			
	then fixed at 2005 levels thereafter	Human & LU	Option 2*: 2005soc	Option 2*: 2005soc	2005soc	2005soc	
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26	
ш	varying society & protection up to 2005,		Experiment I	Option 1*: histsoc			
	then fixed at 2005 levels thereafter	Human & LU		Option 2*: 2005soc	2005soc	2005soc	
	RCP6.0 climate & CO ₂	Climate & CO ₂			гср60		
Ш	varying society & protection up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	2005soc	not simulated	
	no climate change, pre- industrial CO ₂	Climate & CO ₂			picontrol	picontrol	
IV	varying society & protection up to 2100 (SSP2), then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment I	ssp2soc	2100ssp2soc	
	RCP2.6 climate & CO ₂	Climate & CO ₂			rcp26	rcp26	
VI	varying society & protection up to 2100 (SSP2), then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment II	ssp2soc	2100ssp2soc	
	RCP6.0 climate & CO ₂	Climate & CO ₂			rcp60		
VII	varying society & protection (SSP2)	Human & LU	Experiment I	Experiment II	ssp2soc	not simulated	

Table 32 Variables to be reported by coastal infrastructure models.

Variable	Variable name	Resolution	Unit	Comments
Expected number of people flooded annually	par	Time resolved grid	thousands/yr (1000 yr ⁻¹)	Par = People at risk.
Expected seaflood costs	seafloodcost		million dollars/yr (mio 2005US\$ yr ⁻¹)	Expected annual damage caused by seafloods
Adaptation costs of building and upgrading dikes	seadikecost		million dollars/yr (mio 2005US\$ yr ⁻¹)	Cost for building/upgrading dikes
Adaptation costs of maintaining dikes	seadikemain		million dollars/yr (mio 2005US\$ yr ⁻¹)	Cost for maintenance of dikes build since the initial year (2000), but not cost for dikes "build" in the initialization of the model.

14 Fisheries and Marine Ecosystems

14.1 Scenarios

The fisheries and marine ecosystem models are quite diverse. Most include climate-impact models via ESM-simulated primary-production changes, and many also include impacts of changes in water temperature on ectotherm metabolic rates. A very small subset of the models includes ocean-acidification effects. Most models include fishing, either as an imposed process based on observed historical fishing effort (which start in 1950), or as an endogenous process based on simple economic factors.

Fishing effort should be held at constant 1950 levels from 1861-1950. It should then follow the standard historical reconstruction from 1950-2006 typically used by the model, using reconstructed effort or economic forcings as appropriate. Effective effort should be held constant following 2005 in all simulations. For models that include acidification effects, all simulations should include ocean acidification in accordance with the respective climate scenario.

Climate scenari	Climate scenarios				
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.				
historical	Historical climate and CO₂ concentration.				
rcp26	Future climate and CO₂ concentration from RCP2.6				
rcp60	Future climate and CO ₂ concentration from RCP6.0				
Human influence	ces scenarios				
nosoc	No fishing				
histsoc	Historical reconstruction of fishing starting in 1950				
2005soc	Fishing fixed at year 2005 levels				

 Table 33 ISIMIP2b scenarios for simulations of the impacts on marine ecosystems and fisheries.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
	no climate change, pre- industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
ı	varying fishing up to 2005, then fixed at 2005 levels thereafter	Human & LU	nosoc	histsoc	2005soc	2005soc
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26
II	varying fishing up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	histsoc	2005soc	2005soc
	RCP6.0 climate & CO ₂	Climate & CO ₂			rcp60	
III	varying fishing up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	2005soc	not simulated

14.1.1 Output data

Table 34 Common output variables to be provided by global and regional marine fisheries models.

Output variable	Variable name	Resolution	Unit (NetCDF format)	Comments
Essential outputs from global and reg	gional models	(provide as m	nany as possible)
TOTAL system biomass density	tsb	monthly	g C m ⁻²	all primary producers and consumers
TOTAL consumer biomass density	tcb	monthly	g C m ⁻²	all consumers (trophic level >1, vertebrates and invertebrates)
Biomass density of consumers >10cm	b10cm	monthly	g C m ⁻²	if L infinity is >10 cm, include in >10 cm class

Biomass density of consumers >30cm	b30cm	monthly	g C m ⁻²	if L infinity is >30 cm, include in >30 cm class
TOTAL Catch (all commercial functional groups / size classes) where fishing included in model	tc	monthly	g wet biomass / m², g m ⁻²	catch at sea (commercial landings plus discards, fish and invertebrates)
TOTAL Landings (all commercial functional groups / size classes) where fishing included in model	tla	monthly	g wet biomass / m², g m ⁻²	commercial landings (catch without discards, fish and invertebrates)
Optional output from global and reg	ional models			
Biomass density of commercial species where fishing included in model	bcom	monthly	g C m ⁻²	Discarded species not included (Fish and invertebrates)
Biomass density (by functional group / size class) where fishing included in model	b- <class>- <group></group></class>	monthly	g C m ⁻²	Provide name of each size class (<class>) and functional group (<group>) used, and provide a definition of each class/group</group></class>
Catch (by functional group / size class) where fishing included in model	c- <class>- <group></group></class>	monthly	g wet biomass / m²,g m²²	Provide name of each size class (<class>) and functional group (<group>) used, and provide a definition of each class/group</group></class>

15 Terrestrial biodiversity

The following protocol describes the contribution of global terrestrial biodiversity models to ISIMIP2b. Biodiversity is influenced by both climate and land-use change, as well as the biome changes resulting from these drivers. All of these drivers will be considered in biodiversity simulations.

Different model types may be used to simulate biodiversity, such as correlative species distribution models, macroecological species richness models, process-based biodiversity models, and others. There are no restrictions regarding the model type, as long as the methodology has been documented in previous peer-reviewed publications.

In its initial stage, this protocol focuses on correlative species distribution models; it will be amended with the needs and requirements of other model types as required.

Species distribution data, in combination with the observed climate dataset "EWEMBI" provided by ISIMIP, are used for the initial model construction (i.e. model calibration). Biodiversity projections are then calculated using the ISIMIP2b bias-corrected GCM data.

The effects of biome and land-use changes on biodiversity are currently assessed in postprocessing by simply overlaying the results from the climate-based species distribution models with layers of future land-use and biome change. In the future, biome and land-use changes may be directly used as predictor variables during model construction.

15.1 Scenarios

10

Climate scenari	os
picontrol	Pre-industrial climate (year specific for the entire period 1661-2299)
historical	Historical climate.
rcp26	Future climate from RCP2.6
rcp60	Future climate from RCP6.0
Human influence	ces scenarios
nosoc	No human influences considered.(The different land-use scenarios (see other Sectors) will be included in postprocessing and possibly in a more direct way in future model runs.)

Table 2* ISIMIP2b scenarios for global (and potentially regional) biodiversity simulations.

	Experiment	Input	Pre-industrial	Historical 1861-2005 ¹	Future 2006-2099 ²	Extended future 2101-2299 ²
	pre-industrial climate	Climate	picontrol	picontrol	picontrol	picontrol
I	no other human influences	Human &	nosoc	nosoc	nosoc	nosoc
	RCP2.6 climate	Climate	Experiment I	historical	rcp26	rcp26
II	no other human influences	Human &		nosoc	nosoc	nosoc
	RCP6.0 climate	Climate	Experiment I	Experiment II	rcp60	not simulated
Ш	no other human influences	Human &			nosoc	

^{*}for now, only correlative species distribution models are considered. Additional scenario combinations will be contributed from other model types in due time.

Table 4 Output variables¹ to be reported by biodiversity sector models.

Variable (long name)	Variable name	Resolution	Unit (NetCDF format)	Comments
Amphibian species probability of occurrence	amphibian_prob	30-year averages of selected time	Probability of occurrence per	Results from individual

¹for the Terrestrial biodiversity sector, "historical" refers to a 30-year period of current conditions (e.g. 1970-1999)

²within these long-term time periods, biodiversity models will be run for average conditions of selected 30-year periods

Terrestrial mammal species probability of occurrence	mammal_prob	periods ² (0.5°x0.5°)	cell	SDMs
Terrestrial bird species probability of occurrence	bird_prob			
Amphibian species presence	amphibian_pres			
Terrestrial mammal species presence	ter_mammal_pres	30-year averages of selected time periods ² (0.5°x0.5°)	Presence per cell	Results from individual SDMs
Terrestrial bird species presence	ter_bird_pres	(0.00.00.00)		
Amphibian species richness	amphibian_sr			
Terrestrial mammal species richness	ter_mammal_sr			
Terrestrial bird species richness	ter_bird_sr			
Richness of range-restricted (endemic) amphibian species	end_amphibian_sr			
Richness of range-restricted (endemic) terrestrial bird species	end_ter_bird_sr	30-year averages of selected time periods ² (0.5°x0.5°)	Number of species Results from Stacke Macro-ecological ri	ed SDMs and
Richness of range-restricted (endemic) mammal species	end_ter_mammal_sr			
Richness of threatened amphibian species ¹	thr_amphibian_sr			
Richness of threatened terrestrial bird species ¹	thr_ter_bird_sr			

Richness of threatened terrestrial mammal species ¹	thr_ter_mammal_sr
Total species richness	total_sr
Total richness of range-restricted (endemic) species	end_sr
Total richness of threatened species ¹	thr_sr

¹According to the IUCN red list.

5 BirdLife International and Handbook of the Birds of the World 2014. Bird species distribution maps of the world. http://datazone.birdlife.org/species/requestdis

International Union for Conservation of Nature 2011. IUCN Red List of threatened species. http://www.iucnredlist.org/technical-documents/spatial-data

10 16 References

Bolt, J. and van Zanden, J. L.: The Maddison Project: collaborative research on historical national accounts, Econ. Hist. Rev., 67(3), 627–651, 2014.

Choulga, M., Kourzeneva, E., Zakharova, E. and Doganovsky, A.: Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling, Tellus A Dyn. Meteorol. Oceanogr., 66(1), 21295, doi:10.3402/tellusa.v66.21295, 2014.

Dellink, R., Chateau, J., Lanzi, E. and Magné, B.: Long-term economic growth projections in the Shared Socioeconomic Pathways, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2015.06.004, 2015.

Haith, D. A. and Shoemaker., L. L.: Generalized Watershed Loading Functions for stream flow nutrients, Water Resour. Bull., 23, 471–478, 1987.

20 Klein Goldewijk, D. ir. C. G. M.: A historical land use data set for the Holocene; HYDE 3.2. DANS., [online] Available from: http://dx.doi.org/10.17026/dans-znk-cfy3, 2016a.

Klein Goldewijk, K.: A historical land use data set for the Holocene; HYDE 3.2, Data Arch. Networked Serv., doi:10.17026/dans-znk-cfy3, 2016b.

Kourzeneva, E.: External data for lake parameterization in Numerical Weather Prediction and climate modeling, Boreal Environ. Res., 15(2), 165–177, 2010.

²Currently the following 30-year periods are considered: (2036-2065, 2066-2095, 2086-2115, 2136-2165) and the 30-year periods centered around the GCM-specific Global Mean Temperature (GMT) thresholds provided by ISIMIP: https://www.isimip.org/protocol/temperature-thresholds-and-time-slices/.

- Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., Mackenzie, I. a., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D. and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes, Atmos. Chem. Phys., 13(16), 7997–8018, doi:10.5194/acp-13-7997-2013, 2013a.
- Lamarque, J. F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. a., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, a. and Zeng, G.: The atmospheric chemistry and climate model intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6(1), 179–206, doi:10.5194/gmd-6-179-2013, 2013b.
- De Lary, R.: Massif des Landes de Gascogne. II ETAT DES CONNAISSANCES TECHNIQUES, Bourdeaux., 2015.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296(1–4), 1–22, doi:10.1016/J.JHYDROL.2004.03.028, 2004.
- Monfreda, C., Ramankutty, N. and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Glob. Biogeochem. Cycles, 22(GB1022), doi:10.1029/2007GB002947., 2008.
 - Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J. and Döll, P.: Impact of climate forcing uncertainty and human water use on global and continental water balance components, Proc. Int. Assoc. Hydrol. Sci., 93, doi:10.5194/piahs-93-1-2016, 2016.
- Murakami, D. and Yamagata, Y.: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling, [online] Available from: http://arxiv.org/abs/1610.09041 (Accessed 29 May 2017), 2016.
 - Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., Rolinski, S., Stevanovic, M. and Dietrich, J. P.: Land-use protection for climate change mitigation, Nat. Clim. Chang., 4(December), 2–5, doi:10.1038/nclimate2444, 2014.
- Samir, C. and Lutz, W.: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2014.06.004, 2014.
 - Schneiderman, E. M., Pierson, D. C., Lounsbury, D. G. and Zion, M. S.: Modeling the hydrochemistry of the Cannonsville watershed with Generalized Watershed Loading Functions (GWLF), J. Am. Water Resour. Assoc., 38, 1323–1347, 2002.
 - Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J. P., Müller, C., Bonsch, M., Schmitz, C., Bodirsky, B., Humpenöder, F. and Weindl, I.: High-end climate change impacts on agricultural welfare. Sci. Adv., 2016.
- Subin, Z. M., Riley, W. J. and Mironov, D.: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Syst., 4(1), M02001, doi:10.1029/2011MS000072, 2012.
 - Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., Van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P. and Wiberg, D.: Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9(1), 175–222, doi:10.5194/gmd-9-175-2016, 2016.

10