7 Biomes

7.1 Scenarios

Since the pre-industrial simulations are an important part of the experiments, the spin-up has to finish before the pre-industrial simulations start. The spin-up should be using pre-industrial climate (**picontrol**) and year 1860 levels of "other human influences". For this reason, the pre-industrial climate

5 data should be replicated as often as required. The precise implementation of the spin up will be model specific, the description of wich will be part of the reporting process.

Climate & CO ₂ scena	arios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.
historical	Historical climate and CO_2 concentration.
rcp26	Future climate and CO_2 concentration from RCP2.6
rcp60	Future climate and CO_2 concentration from RCP6.0
2005co2	CO2 concentration fixed at 2005 levels at 378.81ppm.
Human influence an	id land-use scenarios
1860soc	Constant pre-industrial (1860) land use, nitrogen deposition, and fertilizer input.
histsoc	Varying historical land use, nitrogen deposition and fertilizer input.
2005soc	Fixed year-2005 land use, nitrogen deposition and fertilizer input.
rcp26soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP2.6.
rcp60soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP6.0.
2100rcp26soc	Land use, nitrogen deposition and fertilizer input fixed at year 2100 levels according to RCP2.6 in 2100.

Table 13 ISIMIP2b scenarios for the global biomes simulations.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
Γ.	no climate change, pre-industrial CO_2	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	1860soc	histsoc	2005soc	2005soc
	RCP2.6 climate & CO ₂	Climate & CO ₂	· Experiment I	historical	rcp26	rcp26
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	experiment i	histsoc	2005soc	2005soc
lla	RCP2.6 climate, CO_2 after 2005 fixed at 2005 levels	ing LU & human influences up to 2005, then		Experiment II	rcp26, 2005co2	rcp26, 2005co2
па	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter			Lxperiment in	2005soc	2005soc
	RCP6.0 climate & CO ₂	Climate & CO_2	Everyment I	Every ment ll	rcp60	not cimulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	2005soc	not simulated
IV	no climate change, pre-industrial CO_2	Climate & CO ₂	Experiment I	Experiment I	picontrol	picontrol
IV	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	experiment i	experiment i	rcp26soc	2100rcp26soc
v	no climate change, pre-industrial CO_2	Climate & CO ₂	Experiment I	Experiment I	picontrol	not simulated
	varying human influences & LU (RCP6.0)	Human & LU			rcp60soc	

VI	RCP2.6 climate & CO ₂	Climate & CO_2	Experiment I	Experiment II	rcp26	rcp26	
VI	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter		Experiment I	Experiment ii	rcp26soc	2100rcp26soc	
VII	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated	
	varying human influences & LU (RCP6.0)				rcp60soc		

Table 14 Additional sector-specific simulations for the biome sector.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
la	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
	LU & human influences fixed at 1860 levels	Human & LU	1860soc	1860soc	1860soc	1860soc
IIb	RCP2.6 climate & CO ₂	Climate & CO ₂	Experiment I	historical	rcp26	rcp26
	LU & human influences fixed at 1860 levels	Human & LU		1860soc	1860soc	1860soc
Illa	RCP6.0 climate, CO_2 after 2005 fixed at 2005 levels	Climate & CO ₂	Everyment	Every entities and the	rcp60, 2005co2	not simulated
IIIa	arying LU & human influences up to 2005, then ked at 2005 levels thereafter		Experiment II	2005soc	not sinulateu	
IIIb	RCP6.0 climate & CO ₂	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated

LU & human influences fixed at 1860 levels	Human & LU			1860soc	
--	------------	--	--	---------	--

5 7.2 Output data

Table 15 Variables to be reported by biomes models. Variables marked by * are also relevant for the permafrost sector and also listed in Table 21.**Note**: If you cannot provide the data at the temporal or spatial resolution specified, please provide it the highest possible resolution of your model.

long name	units		output variable name	resolution	comment
Essential outputs					
Pools					
*Carbon Mass in Vegetation biomass	kg m ⁻²	per pft and gridcell total	cveg- <pft></pft>	annual	Gridcell total cveg is essential. Per PFT information is desirable.
*Carbon Mass in aboveground vegetation biomass	kg m ⁻²	per pft and gridcell total	cvegag- <pft></pft>	annual	Gridcell total cvegag is essential. Per PFT information is desirable.
*Carbon Mass in belowground vegetation biomass	kg m ⁻²	per pft and gridcell total	cvegbg- <pft></pft>	annual	Gridcell total cvegbg is essential. Per PFT information is desirable.
*Carbon Mass in Litter Pool	kg m ⁻²	per gridcell total	clitter	annual	Info for each individual pool.
*Carbon Mass in Soil Pool	kg m ⁻²	per gridcell total	csoil	annual	Info for each individual pool.

Fluxes					
*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	gpp	monthly (daily)	
*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	kg m ⁻² s ⁻¹	per pft	gpp- <pft></pft>	annual	
*Carbon Mass Flux into atmosphere due to Autotrophic (Plant) Respiration on Land	kg m ⁻² s ⁻¹	gridcell total	ra	monthly (daily)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	gridcell total	прр	monthly(daily)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	kg m ⁻² s ⁻¹	per pft	npp- <pft></pft>	annual	
*Carbon Mass Flux into atmosphere due to Heterotrophic Respiration on Land	kg m ⁻² s ⁻¹	gridcell total	rh	monthly(daily)	
*Carbon Mass Flux into atmosphere due to total Carbon emissions from Fire	kg m ⁻² s ⁻¹	gridcell total	fireint	monthly(daily)	

*Carbon Mass Flux out of Atmosphere due to Net biome Production on Land (NBP)	kg m ⁻² s ⁻¹	gridcell total	ecoatmflux	monthly(daily)	This is the net mass flux of carbon between land and atmosphere calculated as photosynthesis MINUS the sum of plant and soil respiration, carbon fluxes from fire, harvest, grazing and land use change. Positive flux is into the land.
Structure		1	1		
*Leaf Area Index	1	per pft	lai- <pft></pft>	annual	
*Leaf Area Index	1	gridcell average	lai	monthly (daily)	
*Plant Functional Type Grid Fraction	%	per gridcell	pft- <pft></pft>	annual (or once if static)	The categories may differ from model to model, depending on their PFT definitions. This may include natural PFTs, anthropogenic PFTs, bare soil, lakes, urban areas, etc. Sum of all should equal the fraction of the grid- cell that is land. Value between 0 and 100.
Hydrological variables			1		
Total Evapo-Transpiration	kg m ⁻² s ⁻¹	gridcell total	evap	monthly (daily)	
Evaporation from Canopy (interception)	kg m ⁻² s ⁻¹	gridcell total	intercep	monthly (daily)	the canopy evaporation+sublimation (if present in model).
Water Evaporation from Soil	kg m ⁻² s ⁻¹	per gridcell	esoil	monthly (daily)	includes sublimation.
Transpiration	kg m ⁻² s ⁻¹	per gridcell	trans	monthly (daily)	

*Runoff	kg m ⁻² s ⁻¹	per gridcell	qtot	monthly (daily**)	total (surface + subsurface) runoff (qtot = qs + qsb).			
					**for models also participating in the water sector			
					If daily resolution not possible, please provide monthly. If storage issues keep you from reporting daily data, please contact the ISIMIP team to discuss potential solutions.			
*Soil Moisture	kg m ⁻²	per gridcell	soilmoist	monthly (daily)	If possible, please provide soil moisture for all depth layers (i.e. 3D- field), and indicate depth in m. Otherwise, provide soil moisture of entire column.			
Surface Runoff	kg m ⁻² s ⁻¹	per gridcell	qs	monthly (daily)	Total surface runoff leaving the land portion of the grid cell.			
*Frozen soil moisture for each layer	kg m ⁻²	per gridcell	soilmoistfroz	monthly	Please provide soil moisture for all depth levels and indicate depth in m.			
*Snow depth	m	per gridcell	snd	monthly	Grid cell mean depth of snowpack.			
*Snow water equivalent	kg m ⁻²	per gridcell	swe	monthly	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.			
*Annual maximum thaw depth	m	per gridcell	thawdepth	annual	calculated from daily thaw depths Please provide for purposes of permafrost sector.			
Other outputs	Other outputs							

*Temperature of Soil	К	per gridcell	tsl	daily (mon)	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea". Also needs depths in meters. Daily would be great, but otherwise monthly would work.
Burnt Area Fraction	%	per gridcell	burntarea	monthly (daily)	Area percentage of grid cell that has burned at any time of the given day/month/year (for daily/monthly/annual resolution)
Albedo	1	per gridcell	albedo	monthly	average of pfts, snow cover, bare ground and water surfaces, range between 0-1
*N ₂ O emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	n2o	monthly	From land, not from industrial fossil fuel emissions and transport
*CH4 emissions into atmosphere	kg m ⁻² s ⁻¹	gridcell total	ch4	monthly	From land, not from industrial fossil fuel emissions and transport