10 Forest Models (Regional, Forest stand-level models)

PROFOUND Contributors: Christopher Reyer, Susana Barreiro, Harald Bugmann, Alessio Collalti, Klara Dolos, Louis Francois, Venceslas Goudiaby, Carlos Gracia, Thomas Hickler, Mathieu Jonard, Chris Kollas, Koen Kramer, Petra Lasch-Born, Denis Loustau, Annikki Mäkelä, Simon Martel, Daniel Nadal I Sala, Delphine Picart, David Price, Santiago Sabaté, Monia Santini, Rupert Seidl, Felicitas Suckow, Margarida Tomé, Giorgio Vacchiano

10.1 Introduction to multi-model simulations in ISIMIP2a and PROFOUND

This is an overview document to support multi-model simulations of forest stand models for both model evaluation with observed data but also for model projections under climate change. A number of sites has been selected in the COST Action PROFOUND for which a) a wide range of forest models can be rather easily initialized, b) observational data is available for model evaluation and b) additional local driving datasets are available such as N-deposition or locally observed climate (**Table 24**). To get access to this PROFOUND Database, please contact <u>rever@pik-potsdam.de</u>. A few important particularities for the forest simulations are listed below.

- Management: The modeling experiments mostly encompass managed forests. The standard management ("varsoc") during the historical period is the observed management as defined by the data available for each site (e.g. reduction in stem numbers) and, after the observations end, missing management information is to be substituted with generic future management guidelines from Table 25 . This future management corresponds best to "intensive even-aged forestry" as defined by Duncker et al. 2012. After harvesting the stands (c.f. Table 25 and Table 26), please proceed after harvest as your model usually does, e.g. plant the same tree species again or allow for regeneration of the same species according to the regeneration guidelines outlined in Table 27. A "natural reference run (nosoc)" without any management will help assessing the influence of forest management.
- 2) Calibration: Some of the models may require some kind of calibration or model development before they can contribute to ISIMIP. Such alterations of the model can influence the results of a model comparison and "model calibration" is understood differently by different modelers. All alterations to the model in the framework of this exercise should be reported in the model experiment documentation provided together with the upload of the simulations. Whenever the model calibration or development is driven by an improvement of the model after a comparison to data that were originally made available in ISIMIP for model evaluation, a part of those data should be kept aside for model evaluation and not used for calibration.

- a. Model development needed to run a model at specific sites is welcomed and needs to be transparent/ properly documented (e.g. adjustment of phenology model to include chilling effects). This is also applicable for more general calibration (i.e. fixing parameters once but not changing afterwards) for example to include a new tree species in a model.
- b. Manual or automatic site-specific "tuning" of species-specific and process-specific parameters should be avoided. The same "model" (i.e. also with the same parameter values) should be used in all simulations. If needed, any tuning needs to be documented in a transparent way and should be backed up by existing data (e.g. from TRY-database). If your model contains genetic processes where the change in parameters is part of the model processes, this is naturally part of "your model approach" and should be clearly spelled out as part of the documentation of your model. In this specific case, please contact the sectoral coordinators to discuss if it makes sense to include a "genetic adaptation" and a "parameter-fixed, control" run.
- 3) Reporting Period: Each phase of ISIMIP has its own reporting period (e.g. 1971-2000 for ISIMIP2A) but since we have sometimes data for model initialization and validation going back even further in time, you should always start your reporting period for the first time step for which stand data is available (e.g. 1948 for the Peitz stand) and run your model until the last point in time where climate data is available. Similarly, if the model runs only start later than, e.g. 1971, the reporting period is shorter. If the data for model initialization is only available very late (e.g. KROOF starts in 1998 only, you do not need to run your model for those climatic datasets which end early (e.g. Watch ending in 2001 already). Likewise, for the future ISIMIPFT runs using GCM data, the sites have to be initialized after 1950 because the GCM historical data is only available from 1950 onwards. This pertains to the sites Peitz and Soro (see Table 26).
- 4) Important amendments to the spin-up as defined in the overall ISIMIP protocol: For those forest models requiring a spin-up, please use the spin-up data as explained in Chapter 5. For the runs using "observations from local meteorological stations or likewise", Louis Francois will provide time series based on Princeton data but so that it matches the average of the data at the meteorological station during the period where meteorological measurements have been taken.

10.2 Experiments

Table 23 provides an overview of all experiments to be run with regional forest models in ISIMIP. This table is for your reference only; please read chapters 1-6 of the general ISIMIP protocol and this whole section carefully before beginning with the experiments. The future simulations here are meant to be catch-up runs with the ISIMIP Fast track data. In case of any questions please contact info@isimip.org. Please note that aside from

harmonized climate, stand, management and soil input, the default settings of your model should be used. Also note that for output data files the **file name is all lower case**! Models should run all four RCPs for each model before moving on to the next GCM.

Table 23 Experiment summary for regional forest models. Each experiment is to be carried out for each site named in **Table 24.** For management scenarios see **Table 25** - .

	Climate Data	Scenario	Management	Other settings (sens-scenario)	# runs
Historical runs	Observations from	hist	1. Observed management (varsoc)	historical CO ₂ without disturbances	2
without	local		2. Natural reference run (nosoc)	(co2), EMEP-N-deposition	
disturbances	meteorological				
(Experiment	station or likewise				
1a)	PGMFD v.2	hist	1. Observed management (varsoc)	historical CO ₂ without disturbances	2
	(Princeton)		2. Natural reference run (nosoc)	(co2), EMEP-N-deposition	
	GSWP3	hist	1. Observed management (varsoc)	historical CO ₂ without disturbances	2
			2. Natural reference run (nosoc)	(co2), EMEP-N-deposition	
	WATCH (WFD)	hist	1. Observed management (varsoc)	historical CO ₂ without disturbances	2
			2. Natural reference run (nosoc)	(co2), EMEP-N-deposition	
	WATCH+WFDEI.GPC	hist	1. Observed management (varsoc)	historical CO ₂ without disturbances	2
	С		2. Natural reference run (nosoc)	(co2), EMEP-N-deposition	
Historical &	GCM1 (HadGEM2-	hist+	1. Observed management + generic	historical CO ₂ + RCP2.6, RCP4.5, RCP6.0,	8
Future runs	ES)	2.6 (rcp2p6), 4.5	future management after observation	RCP8.5 without disturbances (co2)	
without		(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)		
disturbances		8.5 (rcp8p5)	2. Natural reference run (nosoc) without		
(Experiment 2a			management		
– ISIMIP Fast	GCM1 (HadGEM2-	hist+	1. Observed management + generic	historical CO_2 + fixed CO_2 from 2000	8
Track catch-up	ES)	2.6 (rcp2p6), 4.5	future management after observation	onwards (368.87ppm), without	
runs)		(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)	disturbances (noco2)	
		8.5 (rcp8p5)	2. Natural reference run (nosoc)		
	GCM2 (IPSL-CM5A-	hist+	1. Observed management + generic	historical CO ₂ + RCP2.6, RCP4.5, RCP6.0,	8
	LR)	2.6 (rcp2p6), 4.5	future management after observation	RCP8.5 without disturbances (co2)	
		(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)		

	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM2 (IPSL-CM5A-	hist+	1. Observed management + generic	historical CO_2 + fixed CO_2 from 2000	8
LR)	2.6 (rcp2p6), 4.5	future management after observation	onwards (368.87ppm), without	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)	disturbances (noco2)	
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM3 (MIROC-	hist+	1. Observed management + generic	historical CO ₂ + RCP2.6, RCP4.5, RCP6.0,	8
ESM-CHEM)	2.6 (rcp2p6), 4.5	future management after observation	RCP8.5 without disturbances (co2)	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)		
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM3 (MIROC-	hist+	1. Observed management + generic	historical CO_2 + fixed CO_2 from 2000	8
ESM-CHEM)	2.6 (rcp2p6), 4.5	future management after observation	onwards (368.87ppm), without	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)	disturbances (noco2)	
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM4 (GFDL-	hist+	1. Observed management + generic	historical CO_2 + RCP2.6, RCP4.5, RCP6.0,	8
ESM2M)	2.6 (rcp2p6), 4.5	future management after observation	RCP8.5 without disturbances (co2)	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)		
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM4 (GFDL-	hist+	1. Observed management + generic	historical CO_2 + fixed CO_2 from 2000	8
ESM2M)	2.6 (rcp2p6), 4.5	future management after observation	onwards (368.87ppm), without	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)	disturbances (noco2)	
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM5 (NorESM1-	hist+	1. Observed management + generic	historical CO ₂ + RCP2.6, RCP4.5, RCP6.0,	8
M)	2.6 (rcp2p6), 4.5	future management after observation	RCP8.5 without disturbances (co2)	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)		
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		
GCM5 (NorESM1-	hist+	1. Observed management + generic	historical CO_2 + fixed CO_2 from 2000	8
M)	2.6 (rcp2p6), 4.5	future management after observation	onwards (368.87ppm), without	
	(rcp4p5), 6.0 (rcp6p0),	stops (varsoc)	disturbances (noco2)	
	8.5 (rcp8p5)	2. Natural reference run (nosoc)		

10.3 Sector-specific input

The input and evaluation data is provided thr ough the PROFOUND database including a R-package to explore the database. Until the database is officially released, please get in touch with Christopher Reyer (rever@pik-potsdam.de) to access the database.

Site name	Lat	Lon	Country	Forest type	Species	Comments
hyytiala	61.8475	24.295	FI	Even-aged conifer	pisy, piab with some deciduous mix	note that an experimental plot of pine contains a lot of data while footprint of flux tower is larger Please note that the deciduous admixtures only appear in the data at a later stage and hence do not need to be simulated.
peitz	51.9166	14.35	DE	Even-aged conifer	pisy	managed using a weak thinning from below
solling_beech	51.77	9.57	DE	Even-aged deciduous	fasy	
solling_spruce	51.77	9.57	DE	Even-aged conifer	piab	
soro	55.485844	11.644616	DK	Even-aged deciduous	fasy	
kroof	48.25	11.4	DE	Mixed deciduous and conifers	Fasy, piab, acpl, lade, pisy, quro	unmanaged/ thinning from below in past 20 years
le_bray	44.71711	-0.7693	FR	Even-aged conifer	рірі	
collelongo	41.8494	13.5881	IT	Even-aged deciduous	fasy	
bily_kriz	49.3	18.32	CZ	Even-aged conifer	piab	

Table 24 Overview of the forest stands to be simulated in ISIMIP/PROFOUND.

Table 25 Generic future management for the different tree species. If there is no information about management of the stands available in Table 29, please apply the following generic management guidelines. For past simulations and depending on the model, modellers should use the observed stem numbers from the time series of stand and tree level data to mimick stand management. Future management should then be added according to the generic management guidelines outlined below. E.g., The last management for the Peitz site can be infered from the tree data is taking place in 2011, hence the next management would then happen in 2026 according to **Table 26**.

Species	Thinning regime	Intensity [% of basal area]	Interval [yr]	Stand age for final harvest	Remarks
pisy	below	20	15	140	Pukkala et al. 1998; Fuerstenau et al. 2007; Gonzales et al- 2005; Lasch et al. 2005
piab	below	30	15	120	Pape 2008; Pukkala et al. 1998; Hanewinkel and Pretzsch- 2000; Sterba 1986; Laehde et al. 2010
fasy	above	30	15	140	Schuetz 2006; Mund et al. 2004; Hein and Dhote 2006; Cescatti and Piutti 1998
quro/qupe	above	15	15	200	Hein and Dhote 2006; Fuerstenau et al. 2007; Štefančík 2012; Kerr 1996; Gutsch et al. 2011
pipi	below	20	10	45	Management after Loustau et al. 2005 & Thivolle-Cazat et al. 2013

Table 26 Management schedules for the sites included in the simulation experiments. The first available data point is used for model initialization (Ini). Following data points are used to mimick historic management (HM). When no more observed data is available, the generic management rules from **Table 25** are being used (FM). For a better overview, harvest and planting are marked in bold.

Name	Ini	НМ	FM1	FM2	FM3	FM4	FM5	FM6	FM7	FM8	FMX	FMX	FMX	FMX	FMX	Remarks
bily_kriz	1997	1998-2015 [™]	2030 ^T	2045 [*]	2060 ^T	2075 [*]	2090 ^T	2101 ^H	2102 ^P	2117 ^T		2222 ^H	2223 ^P	2238 [⊤]		
collelongo	1992	1997-2012 ^T	2027 [†]	2032 ^H	2033 ^P	2048 [†]	2063 ^T	2078 [†]	2093 [†]		2173 ^H	2174 ^P	2189 ^T			
hyytiala*	1995	1996-2011 [*]	2026 [†]	2041 [†]	2056 [†]	2071 [†]	2086 [†]	2101 ^H	2102 ^P	2117 [†]		2242 ^H	2243 ^P	2258 ^T		Only simulate pine and spruce (no hard- woods) and regenerate as pure pine stand
kroof*	1997	1999-2010 [†]	2025	2040 [†]	2055	2070 [†]	2085	2100 ^T	2101 ^H	2102 ^P	2117		2222 ^H	2223 ^P		Harvest all species at the same time (i.e. 120 years)
le_bray	1986	1987-2009 ^T	2015 ^H	2016 ^P	2026 [*]	2036 ^T	2046 ^T	2056 ^T	2061 ^H	2062 [₽]	2072 [†]		2107 ^H	2108 ^P	2026 ^T	
Peitz	1948**	1952-2011 [*]	2026 [*]	2040 ^H	2041 ^P	2056 ^T	2071 ^T	2086 ^T	2101 [™]		2181 ^H	2182 ^P	2197 ^T			
solling_beech*	1980	1985-2000 ^T	2015 ^H	2016 ^P	2031 ^T	2046 ^T	2061 ^T	2076 ^T	2091 [*]		2156 ^H	2157 ^P	2172 ^T		2297 ^H	
solling_spruce*	1967	1968-2009 [*]	2024 ^H	2025 ^P	2040 ^T	2055 [*]	2070 [†]	2085 [†]	2100 ^T		2145 ^H	2146 ^P	2161 [*]		2266 ^H	
Soro	1944**	1945-2005 ^T	2020 ^T	2035 ^T	2050 ^T	2061 ^H	2062 ^P	2077 ^T	2092 ^T		2202 ^H	2203 ^P	2218 ^T			

Ini = Initialization data, HM = Historic Management, FM = Future Management, T=Thinning, H= Harvest, P=Planting, *=maximum age extended a bit to match local management during observed period or avoid harvesting just before the end of the simulation, **= the GCM data only starts in 1950, hence for future

runs (Experiment 2a), you have to initialize these forests at the first time step after 1949 (i.e. 1952 for Peitz and 1950 for Soro). For the historical validation runs (Experiment 1a) you can start with the first available stand initialization.

Table 27 Planting information for the sites included in the simulation experiments. DBH is defined as diameter at breast height of 1.30m. Thenumbers in brackest indicate plausible ranges.

Name	Density ha ⁻¹	Age vears	Height m	DBH cm	age when DBH is reached years	Remarks
bily_kriz	4500	4	0.5	na	9	Historical planting density was 5000/ha but current practices are 4500/ha only
collelongo	10000	4	1.3	0.1	4	Only a rough approximation, usually natural regeneration is the regeneration method.
hyytala	2250 (2000-2500)	2	0.25 (0.2-0.3)	na	6 (5-7)	
kroof (beech)	6000 (5000-7000)	2	0.6 (0.5-0.7)	0.5	5	The planting density is for single-species stands, hence when regenerating the 2-species-stand KROOF, the planting density of each species should be halved
kroof (spruce)	2250 (2000-2500)	2	0.35 (0.3-0.4)	0.5	7	See above
le_bray	1250 (1000-14000)	1	0.2 (0.1-0.25)	na	3 (2-5)	These are the current practices (<i>De Lary, 2015</i>) and should be used for future regeneration. Historically, the site was seeded with 3000-5000 seedlings per ha and then cleared once or twice to reach a density of 1250/ha at 7-year old when seedlings reach the size for DBH recruitment. → modelers could mimic this by "planting" trees with DBH of 7.5cm and 6m height in 1978 with a density of 1250 trees/ha
peitz	9000 (8000-10000)	2	0.175 (0.1-0.25)	0.1	5	The "age when DBH is reached = 5" is an estimate
solling_beech	6000 (5000-7000)	2	0.6 (0.5-0.7)	0.5	5	
solling_spruce	2250 (2000-2500)	2	0.35 (0.3-0.4)	0.5	7	
soro	6000	4	0.82	na	6	

10.4 Output data

Table 28 Variables to be reported by forest models. Abbreviations are provided in Table 29. Variables should be reported as documented in section

 6.

Long name	units		output variable name	frequency	comment
Essential (mandatory)					
outputs					
Mean DBH	cm	per species and stand total	dbh- <species total=""></species>	year	
Mean DBH of 100 highest	cm	stand total	dbh-domhei	year	100 highest trees per
trees					hectare.
Stand Height	m	per species and stand total	height- <species total=""></species>	year	For models including
					natural regeneration
					this variable may not
					make sense, please
					report dom_height
Dominant Height	m	stand total	dom-height	year	Mean height of the 100
					highest trees
Stand Density	Trees/ha	per species and stand total	density- <species total=""></species>	year	
Basal Area	m²ha⁻¹	per species and stand total	ba- <species total=""></species>	year	
Volume of Dead Trees	m³ha⁻¹	per species and stand total	mort- <species total=""></species>	year	
Harvest by dbh-class	m³ha⁻¹	per species and stand total	harv- <species total="">-</species>	year	
		and dbh-class	<dbhclass total=""></dbhclass>		
Remaining stem number	Trees/ha	per species and stand total	stemno- <species total="">-</species>	year	
after disturbance and			<dbhclass total=""></dbhclass>		
management by dbh class					
Stand Volume	m³ ha⁻¹	per species and stand total	vol- <species total=""></species>	year	
Carbon Mass in Vegetation	kg C m⁻²	per species and stand total	cveg- <species total=""></species>	year	
biomass (incl. Soil veg.?)					
Carbon Mass in Litter Pool	kg C m ⁻²	per species and stand total	clitter- <species total=""></species>	year	Info for each individual
					pool.

Carbon Mass in Soil Pool	kg C m ⁻²	per species and stand total	csoil- <species total=""></species>	year	Info for each individual
					soil layer
Tree age by dbh class	yr	per species and stand total	age- <species total="">-<dbhclass total=""></dbhclass></species>	year	
Gross Primary Production	kg m ⁻² s ⁻¹	per species and stand total	gpp- <species total=""></species>	day	As kg carbon*m ⁻² *s ⁻¹
Net Primary Production	kg m ⁻² s ⁻¹	per species and stand total	npp- <species total=""></species>	day	As kg carbon*m ⁻² *s ⁻¹
Autotrophic (Plant)	kg m ⁻² s ⁻¹	per species and stand total	ra- <species total=""></species>	day	As kg carbon*m ⁻² *s ⁻¹
Respiration					
Heterotrophic Respiration	kg m ⁻² s ⁻¹	stand total	rh- <total></total>	day	As kg carbon*m ⁻² *s ⁻¹
Net Ecosystem Exchange	kg m ⁻² s ⁻¹	per stand	nee- <total></total>	day	As kg carbon*m ⁻² *s ⁻¹
Mean Annual Increment	m³ ha⁻¹	per species and stand total	mai- <species total=""></species>	year	
Fraction of absorbed	%	per species and stand total	fapar- <species total=""></species>	day	
photosynthetically active					
radiation					
Leaf Area Index	$m^2 m^{-2}$	per species and stand total	lai- <species total=""></species>	mon	
Species composition	% of basal	per ha	species- <species></species>	year	The categories may
	area			(or once if	differ from model to
				static)	model, depending on
					their species and stand
					definitions.
Total Evapotranspiration	kg m-2 s-1	stand total	evap- <total></total>	day	sum of transpiration,
					evaporation,
					interception and
					sublimation.
					(=intercept+esoil+trans)
Evaporation from Canopy	kg m-2 s-1	per species and stand total	intercept- <species total=""></species>	day	the canopy
(interception)					evaporation+sublimatio
					n (if present in model).
Water Evaporation from Soil	kg m-2 s-1	per stand	esoil	day	includes sublimation.
Transpiration	kg m-2 s-1	per species and stand total	trans- <species total=""></species>	day	
Soil Moisture	kg m-2	per stand	soilmoist	day	If possible, please
					provide soil moisture for

					all depth layers (i.e. 3D-
					field), and indicate
					depth in m. Otherwise,
					provide soil moisture of
					entire column.
Optional outputs	– 1 -1				
Removed stem numbers by	Trees ha	per species and stand total	mortstemno- <species total="">-</species>	year	
size class by natural mortality	– //		<dbhclass total=""></dbhclass>		
Removed stem numbers by	Trees/na	per species and stand total	narvstemno- <species total="">-</species>	year	
size class by management	2 1 -1		<dbhclass total=""></dbhclass>		
Volume of disturbance	m ³ ha ⁻	per species and stand total	dist- <dist_name></dist_name>	year	
damage	-2 -1				
Nitrogen of annual Litter	g N m ⁻ a ⁻	per species and stand total	nlit- <species total=""></species>	year	
Nitrogen in Soil	g N m fa f	stand total	nsoil- <total></total>	year	
Net Primary Production	kg m-2 s-1	per species and stand total	npp-landleaf- <species></species>	day	As kg carbon*m ⁻² *s ⁻¹
allocated to leaf biomass					
Net Primary Production	kg m-2 s-1	per species and stand total	npp-landroot- <species></species>	day	As kg carbon*m ⁻² *s ⁻¹
allocated to fine root					
biomass					
Net Primary Production	kg m-2 s-1	per species and stand total	npp-abovegroundwood- <species></species>	day	As kg carbon*m ⁻² *s ⁻¹
allocated to above ground					
wood biomass					
Net Primary Production	kg m-2 s-1	per species and stand total	npp-belowgroundwood- <species></species>	day	As kg carbon*m ⁻² *s ⁻¹
allocated to below ground					
wood biomass					
Root autotrophic respiration	kg m-2 s-1	per species and stand total	rr- <species total=""></species>	day	As kg carbon*m ⁻² *s ⁻¹
Carbon Mass in Leaves	kg m-2	per species and stand total	cleaf- <species></species>	year	
Carbon Mass in Wood	kg m-2	per species and stand total	cwood- <species></species>	year	including sapwood and
					hardwood
Carbon Mass in Roots	kg m-2	per species and stand total	croot- <species></species>	year	including fine and

					coarse roots
Temperature of Soil	К	per stand	tsl	day	Temperature of each
					soil layer

Note: If you cannot provide the data at the temporal or spatial resolution specified, please provide it the highest possible resolution of your model. Please contact the coordination team (info@isimip.org) to for any further clarification, or to discuss the equivalent variable in your model. **Table 29**: Codes for species, disturbance names and dbh classes as used in protocol (species, dist_name, dbhclass).

long name	Short name
Fagus sylvatica	fasy
Quercus robur	quro
Quercus petraea	qupe
Pinus sylvestris	pisy
Picea abies	piab
Pinus pinaster	pipi
Larix decidua	lade
Acer platanoides	acpl
Eucalyptus globulus	eugl
Betula pendula	bepe
Betula pubescens	bepu
Robinia pseudoacacia	rops
Fraxinus excelsior	frex
Populus nigra	poni
Sorbus aucuparia	soau
hard woods	hawo
fire	fi
wind	wi
Insects	ins
Drought	dr
Grazing	graz
Diseases	dis
DBH_class_ <x>-<x+5>*</x+5></x>	dbh_c <x></x>
DBH_class_>140*	dbh_c140

*the boundaries of the dbh classes should interpreted as follows: dbh_class_0-5 = 0 to<5 cm; dbh_class_5-10 = 5 to<10 cm, etc.... the dbh class dbh_c140 includes all trees of 140cm dbh and larger.

10.5 Experiments and possible analyses

10.5.1 Historic runs and validation exercise – Experiments 1a

These are the core simulations for ISIMIP2a. For the sites mentioned in **Table 24**, a detailed comparison of model-data-(mis)match is envisaged, especially with a focus on past extreme events (e.g. 2003) and variability. These data may also be interesting for some additional validation tasks that can be carried out during postprocessing. The simulations of Experiment 1a listed in **Table 23** are needed for this experiment.

10.5.2 ISIMIP Fast-track catch-up runs – Experiments 2a

These are simulations for the sites mentioned in **Table 24** using ISIMIP Fast track climate scenarios to project forest development under climate change in the future. These are interesting for cross-scale comparisons with DGVMs, cross-sectoral analysis of climate impacts and multi-model climate change impact projections. The simulations of Experiment 2a listed in **Table 23** are needed for this experiment.

10.5.3 Influence of disturbances – (optional, future experiments 1b and 2b)

These are historic and future simulations as described in sections 7.3.5.1 and 7.3.5.2 but with dynamic disturbances switched on for those models that actually simulate such dynamics. These simulations can be used to isolate the effects of disturbances vs. climate or to consider the joint impact of climate change and disturbances on forest products and services. The simulations of Experiment 1b and 2b listed in **Table 23** are needed for this experiment.

10.5.4 Isolation of climate effects (optional, future experiment)

Simulate time slices (i.e. same stand as growing in past simulations is repeatedly simulated for different time slices of maybe 20-30 years) to isolate the effects of climate change from the effects of forest dynamics. Some stands are already very old and would reach 200 years or more of age in 2100.

10.5.5 Climate input uncertainty (optional, future experiments)

What is the influence of the climate data to be used? Currently, we focus on observed time series from stands for model evaluation and GCM-data from the grid-cell in which a forest stand is located for future runs. Further downscaling of GCM data is at the moment not envisaged for consistency with ISIMIP in general. However in the future it could be interesting to design additional runs with downscaled climate data, e.g., using CORDEX runs or data from other sources.

10.5.6 Influence of forest structure (optional, future experiments)

Given the societal and environmental changes affecting forest economics and ecology, forest management systems and practices must be adapted and improved in order to maintain the socio-economic and environmental functions of the European forests. The structurally complex stands such as uneven-aged mixed-species stands are promising to ensure a sustainable wood production while improving forest stand resilience and ecosystem service provision. However, the process-based eco-physiological and biogeochemical models designed to analyze forest ecosystem response to environmental changes generally accounts for the effects of stand structure in very simplified way.

Our objective is to simulate the effects of forest structure in terms of vertical structure and/or species composition and/or cohorts on the main carbon cycle and stand growth variables (e.g. GPP, NPP, Autotrophic Respiration, Mean Annual Volume Increment, Current Annual Volume Increment) and tree attributes (heights, DBHs).

A first experiment could compare even-aged vs uneven-aged stands or pure vs mixed stands making sure everything is comparable except stand structure (using eventually virtual stands created based on existing ones but adapted to be more comparable).

A second experiment could be conducted to compare simulations of models with different levels of spatial description (stand, cohort, tree) and identify which approach is most appropriate depending on the stand structure complexity.

A third experiment would consist in simulating the evolution of existing stands with contrasted structure according to different silvicoltural and climate scenarios.