6 Lakes

Simulations of climate-change effects on lakes will be made using coupled lake-hydrodynamic and water-quality models. Models can operate on the global scale (uncalibrated) or on a number of case-study lakes (calibrated). Both global and local models will conduct the same set of scenarios.

Global lake models

- Global-scale simulations should be performed either assuming a lake present in every pixel or using grid-scale lake fraction based on the Global Lake 5 Döll. Wetland Database (GLWD: Lehner and 2004) and available on the DKRZ and input data repository (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/pctlake.nc4; Subin et al., 2012). Since a 0.5°x0.5° pixel potentially contains multiple lakes with different characteristics (e.g. in terms of bathymetry, transparency, fetch), it is not possible to fully represent this subgrid-scale heterogeneity. Instead, the global-scale lake simulations should represent a 'representative lake' for a given pixel. Consequently, no stringent requirement is imposed with respect to lake depth, light extinction coefficient or initial conditions. 10
- For lake depth, modellers are encouraged to use the data from the Global Lake Data Base (GLDB). A regridded lake depth field based on GLDBv1

0.5°x0.5° DKRZ (Kourzeneva. 2010) is available at resolution on the input data repository (/work/bb0820/ISIMIP/ISIMIP2b/InputData/lakes/lakedepth.nc4; this field was aggregated from 30 arc sec to 1.9°x2.5° and then interpolated again to 0.5°x0.5°; Subin et al., 2012), but modellers may choose to use the more recent GLDBv2 available at 30 arc sec (http://www.flake.igb-berlin.de/epdata.shtml, Choulga et al., 2014). Modellers are requested to document their approach regarding lake depth, light extinction coefficient and initial

Local lake models

15

Simulations will be made for case-study lakes selected based on the availability of high-quality meteorological and limnological observations, thereby aiming for a good spread across climates and lake types. Model inputs consist of the meteorological variables given in **Table 1**, water inputs from

- 20 hydrological model simulations, and nutrient loads estimated using simple loading function (Haith and Shoemaker., 1987; Schneiderman et al., 2002) or statistical estimation procedures. In addition site-specific data will be needed such as lake bathymetry data. Climate-change effects on lakes will be proportioned according to the ISIMP2b experiments (Table 10). Direct climate effects on lakes that influence factors such as water temperature stratification period, mixing depth etc. will be simulated using climate scenarios shown in Table 11 and water inflows from hydrologic model simulations based on the Table 9 experiments. Lake water quality simulations, which affect factors such as phytoplankton and nutrient levels, will also need to
- 25 include simple nutrient loading inputs linked to the hydrologic model simulations.

conditions in the ISIMIP Impact Model Database (www.isimip.org/impactmodels).

All variables are to be reported as time-averages with the indicated resolution. It is expected that most models will output data at daily resolution.

Model outputs that indicate the timing or duration of seasonal changes and do not vary with depth (i.e. onset of thermal stratification) are shaded light blue. The remaining outputs vary with both time and depth (i.e. Chlorophyll Concentration). In the case of time and depth-varying, data should be provided as a mean of the epilimnion or mixed layer, and mean of the hypolimnion, and as fully-resolved vertical profiles. When the lake is simulated

30 as completely mixed or isothermal, the mean of the entire water column is assigned to the epilimnion, and the hyolimnion concentration is set to a missing value.

Note that the range of model outputs will vary from model to model. Below are generic outputs that capture the basic information provided by most lake-eutrophication models. Modelling groups whose models do not provide all information listed here are invited to report on the reduced set of variables implemented in their models.

6.1 Scenarios

Climate & CO ₂ con	centration scenarios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little) recycling of data has taken place.
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO ₂ concentration from RCP2.6
rcp60	Future climate and CO_2 concentration from RCP6.0
Human influence	and land-use scenarios
1860soc	Pre-industrial land use and other human influences. Given the small effect of dams & reservoirs before 1900, modellers may apply the 1901 dam/reservoir configuration during the pre-industrial period and the 1861-1900 part of the historical period if that is significantly easier than applying the 1861 configuration.
histsoc	Varying historical land use and other human influences.
2005soc	Fixed year-2005 land use and other human influences.
rcp26soc	Varying land use ((e.g. point source inputs of nutrients and operational changes of reservoirs), water abstraction and other human influences according to SSP2 and RCP2.6; fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.
rcp60soc	Varying land use, water abstraction and other human influences according to SSP2 and RCP6.0, fixed year-2005 dams and reservoirs. For models using fixed LU types, varying irrigation areas can also be considered as varying land use.
2100rcp26soc	Land use and other human influences fixed at year 2100 levels according to RCP2.6.

5

For the historical period, groups that have limited computational capacities may choose to report only part of the full period, but including at least 1961-2005. All other periods should be reported completely. For those models that do not represent *changes* in human influences, those influences

should be held fixed at 2005 levels throughout all Group 1 (cf. **2005soc** marked as dashed blue lines in Fig. 1) and Group 2 simulations. Group 3 will be identical to Group 2 for these models and thus does not require additional simulations. Models that do not include human influences *at all* should nevertheless run the Group 1 and Group 2 simulation, since these simulations will still allow for an exploration of the effects of climate change compare to pre-industrial climate, and will also allow for a better assessment of the relative importance of human impacts versus climate impacts. These runs should be named as **nosoc** simulations.

 Table 11 ISIMIP2b scenarios for lakes simulations. Option 2* only if option 1 not possible.

5

	Experiment	Input	pre-industrial 1661-1860	historical 1861-2005	future 2006-2099	extended future 2100-2299
	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
I	varying LU and other human influences according	Human &	Option 1: 1860soc	Option 1: histsoc		
	to RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter	LU	Option 2*: 2005soc	Option 2*: 2005soc	2005soc	2005soc
	RCP2.6 climate & CO ₂	Climate & CO ₂		historical	rcp26	rcp26
п	varying LU and other human influences according to RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter	Human & LU	Experiment I	Option 1: histsoc		2005soc
				Option 2*: 2005soc	2005soc	
	RCP2.6 climate, CO_2 after 2005 fixed at 2005 levels	Climate & CO ₂			rcp26, 2005co2	rcp26, 2005co2
lla	LU & human influences fixed at 2005 levels after 2005	Human & LU	Experiment I	Experiment II	2005soc	2005soc
	RCP6.0 climate & CO ₂	Climate & CO ₂	· Experiment I	Experiment II	rcp60	not simulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU			2005soc	not simulateu

	no climate change, pre-industrial CO ₂	Climate & CO ₂			picontrol	picontrol	
IV	varying LU and other human influences according to RCP2.6 + SSP2 up to 2100, then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment l	rcp26soc	2100rcp26soc	
v	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I	picontrol	not simulated	
V	varying human influences & LU (RCP6.0)	Human & LU	Experiment		rcp60soc	not simulateu	
VI	RCP2.6 climate & CO ₂	Climate & CO ₂	Eveneriment	Even ovim ont II	rcp26	rcp26	
VI	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment II	rcp26soc	2100rcp26soc	
VII	RCP6.0 climate & CO ₂	Climate & CO ₂	· Experiment I	Experiment II	rcp60	not simulated	
	varying human influences & LU (RCP6.0)	Human & LU			rcp60soc	not simulateu	

6.1.1 Output data

Table 12 Output variables to be reported by lake models.

Variable (long name)	Variable name	Spatial Resolution	Temporal Resolution	Depth Resolution	Unit (NetCDF format)	Comments
		н	ydrothermal Va	ariables		
Onset of thermal stratification	stratstart	Representative lake associated with grid cell)	Seasonal	None	Day of year when stratification started (1-365)	Day of year associated with the onset of thermal stratification

Loss of Statification	stratend	(Representative lake associated with grid cell)	Seasonal	None	Day of year when stratification ended (1-365)	Day of year associated with the loss of thermal stratification
Duration of stratification	stratdur	Representative lake associated with grid cell)	Seasonal	None	d	Total days of thermal stratification
Onset of lake Ice cover	icestart	Representative lake associated with grid cell)	Seasonal	None	Day of year when ice cover started (1-365)	Day of year associated with the onset of permanent ice cover
Loss of lake Ice cover	iceend	Representative lake associated with grid cell)	Seasonal	None	Day of year when ice cover ended (1-365)	Day of year associated with the loss of permanent ice cover
Duration of Lake Ice Cover.	icedur	Representative lake associated with grid cell)	Seasonal	None	d	Total days of continuous ice cover
Depth of Thermocline	thermodepth	Representative lake associated with grid cell)	Daily	Single depth	m	Depth corresponding the maximum water density gradient
Water temperature	watertemp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	К	Simulated water temperature. Layer averages and full profiles
Lake layer ice mass fraction	lakeicefrac	Representative lake associated with grid cell	Monthly (Daily)	Mean Epi	unitless	Fraction of mass of a given layer taken up by ice

ice thickness	icethick	Representative lake associated with grid cell)	Monthly	Single thickness	m	
snow thickness	snowthick	Representative lake associated with grid cell)	Monthly	Single thickness	m	
temperature at the ice upper surface	icetemp	Representative lake associated with grid cell)	Monthly	None	К	
temperature at the snow upper surface	snowtemp	Representative lake associated with grid cell)	Monthly	None	К	
sensible heat flux at the lake-atmosphere interface	sensheatf	Representative lake associated with grid cell)	Monthly	None	W/m ²	At the surface of snow, ice or water depending on the layer in contact with the atmosphere. positive if upwards.
latent heat flux at the lake-atmosphere interface	latentheatf	Representative lake associated with grid cell)	Monthly	None	W/m ²	See sensible heat flux
momentum flux at the lake-atmosphere interface	momf	Representative lake associated with grid cell)	Monthly	None	W/m ²	See sensible heat flux

upward long-wave radiation flux at the lake-atmosphere interface	lwup	Representative lake associated with grid cell)	Monthly	None	W/m ²	See sensible heat flux. Not to be confused with net longwave radiation
downward heat flux at the lake- atmosphere interface	lakeheatf	Representative lake associated with grid cell)	Monthly	None	W/m ²	See sensible heat flux
surface albedo	albedo	Representative lake associated with grid cell)	Monthly	None	unitless	Albedo of the surface interacting with the atmosphere (water, ice or snow)
		١	Nater Quality V	ariables		
Chlorophyll Concentration	chl	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	g ⁻³ m ⁻³	Total water chlorophyll concentration – indicator of phytoplankton
Phytoplankton Functional group biomass	phytobio	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³ as carbon	Different models will have different numbers of functional groups so that the reporting of these will vary by model
Zoo plankton biomass	zoobio	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³ as carbon	Total simulated Zooplankton biomass

Total Phosphorus	tp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Particulate Phosphorus	pp	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Total Dissolved Phosphorus	tpd	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Some models may also output data for soluable reactive phosphorus (SRP)
Total Nitrogen	tn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Particulate Nitrogen	pn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	
Total Dissolved Nitrogen	tdn	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Some models may also output data for Nitrate (N02) nitrite (NO3) and ammonium (NH4)
Dissolved Oxygen	do	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	

Dissolved Organic Carbon	doc	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Not always available
Dissolved Silica	si	Representative lake associated with grid cell)	Daily	Mean Epi Mean Hypo Full Profile	mole m ⁻³	Not always available