
10 Agriculture (cropmodelling)
This section lays out the global output protocol for the agricultural sector’s contribution to ISIMIP. For further details, please contact AgMIP (ag-grid@agmip.org) and ISIMIP (info@isimip.org).Note that the variable names are chosen to comply with AgMIP conventions or are harmonized with the conventions used in the ISIMIP watersector (for irrigation water). They are given in lower-case letters only in order to prevent the use of mixed-case names in the file names (seeSection 5.1.1). Table 6 provides an overview of all experiments to be run in the agriculture (crop modelling) sector in ISIMIP2a.

10.1 Experiments
Table 24: Experiment summary for crop models.Climate Data Scenario Management settings Land use (LU) Other settings (sens-scenario) Irrigation # Runs

Historicalruns

WFD+WFDEI hist default (present day)(default)fully harmonized (fullharm)harmonized season, no Nconstraints (harmnon)

pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 6

GSWP3-W5E5 hist default (present day)(default) pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 2
GSWP3-EWEMBI hist default (present day)(default) pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 2
GSWP3 hist default (present day)(default) pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 2
PGMFD v.2(Princeton) hist default (present day)(default) pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 2
WATCH (WFD) hist default (present day)(default) pure crop run (no LUspecifier) historical CO2 (no co2specifier) firrnoirr 2

12 (per crop)
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10.2 Sector-specific input
Some GGCMs require inputs on planting dates, crop variety parameters, fertilizer use and possibly other management specifics. While the
agreement for the fast-track was to use each model’s setting that best represents current management patterns, we’ll have specific inputs on
planting dates and maturity dates (to allow for spatially-explicit variety parameterization) as well as fertilizer use (N, P, K). Some experiments will
be run with harmonized input data (validation and attribution studies), and some with default model settings.
Table 25: Crop-model-specific input data.
Variable Source* Units Notes
Planting
dates

(Sacks, Deryng, Foley, &
Ramankutty, 2010),
(Portmann, Siebert, & Döll,
2010), ﻿supplemented with a
rule-based approach as
implemented in LPJmL in
regions without observational
data (see Elliott et al. 2015).

Julian days
(Jan 1st= 1,…)

Planting dates for primary seasons per crop and grod cell.

Approximate maturity (Sacks, Deryng, Foley, &
Ramankutty, 2010),
(Portmann, Siebert, & Döll,
2010) , ﻿supplemented with a
rule-based approach as
implemented in LPJmL in
regions without observational
data (see Elliott et al. 2015).

days from planting Growing season length in days.

Fertilizers and manure (Mueller, et al., 2012),
(Potter, Ramankutty,

kg ha-1 yr-1 Average nitrogen, phosphorus, and potassium application rates in
each grid cell, with organic and inorganic amendments aggregated



6 There will be no distinction between winter and spring wheat.

Bennett, & Donner, 2011),
(Liu, et al., 2010), (Foley, et
al., 2011)

and converted to an “effective inorganic application rate”.

Historical [CO2] Mauna Loa/RCP historical ppm Annual [CO2] values from 1900-2013.

10.3 Output data and definitions
Crop Priority and naming list:

1. Wheat6, maize, soy, rice [whe, mai, soy, ric]
2. All others: Sugarcane, sorghum, millet, rapeseed, sugar beet, barley, rye, oat [sug, sor, mil, rap, sgb, bar, rye, and oat] + managed

grass [mgr]137, field peas [pea], cassava [cas], sunflower [sun], groundnuts [nut], bean [ben], potato [pot], bioenergy crops such as
poplar [pop], eucalyptus [euc], miscanthus [mis] … Note: planting and maturity dates for bioenergy crops shall only be reported
if meaningful (i.e. not for perennials).

Reporting per growing seasons:To resolve potential double harvests within one year, crop yields should be reported per growing season and not per calendar year. Thus, in theNetCDF output files, do not use a time dimension but instead a unitless coordinate variable with integer values; more information on how toconstruct these files in Section 5.1.6 and in our ISIMIP website (https://www.isimip.org/protocol/preparing-simulation-files/). Cumulativegrowing season variables such as, e.g., actual evapotranspiration or precipitation are to be accumulated over the growing season. The firstseason in the file (growing-season=0) is then the first complete growing season of the time period provided by the input data without anyassumed spin-up data, which equates to the growing season with the first planting after this date. To ensure that data can be matched toindividual years in post-processing, it is essential to also provide the actual planting dates (as day of the year), actual planting years (year),
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anthesis dates (as day of the year), year of anthesis (year), maturity dates (day of the year), and year of maturity (year). This procedure isidentical to the GGCMI convention (Elliott, et al., 2015).

Table 26: Output variables for crop models.
Variable (long name) Variable name Unit Resolution Comments
Key model output
Crop yields yield-<crop>-

<irrigation setting>
dry matter(t ha-1 per growingseason)

per growing season
(0.5°x0.5°)

Crop-specific
Yield may be identical to above-ground biomass
(biom) if the entire plant is harvested, e.g. for
bioenergy production.

Irrigation water
withdrawal (assuming
unlimited water supply)

pirrww-<crop>-
<irrigation setting>

mm per growing season per growing season
(0.5°x0.5°)

Irrigation water withdrawn in case of optimal
irrigation (in addition to rainfall), assuming no losses
in conveyance and application.

Key diagnostic variables
Actual
evapotranspiration

aet-<crop>-
<irrigation setting>

mm per growing season per growing season
(0.5°x0.5°)

portion of all water (including rain) that is evapo-
transpired, the water amount should be accumulated
over the entire growing period (not the calendar year)

Nitrogen application rate initr-<crop>-
<irrigation setting>

kg ha-1 per growingseason per growing season
(0.5°x0.5°)

Total nitrogen application rate. If organic and
inorganic amendments are applied, rate should be
reported as effective inorganic nitrogen input
(ignoring residues).

Actual planting dates plantday-<crop>-
<irrigation setting>

Day of year per growing season
(0.5°x0.5°)



Anthesis dates anthday-<crop>-
<irrigation setting>

Days from planting date per growing season
(0.5°x0.5°)

Maturity dates matyday-<crop>-
<irrigation setting>

Days from planting date per growing season
(0.5°x0.5°)

Additional output variables (optional)
Above ground biomass
(dry matter)

b i o m - < c r o p > -
<irrigation setting>

t ha-1 per growing
season

per growing season
(0.5°x0.5°) The whole plant biomass above ground

Soil carbon emissions s c o 2 - < c r o p > -<irrigation setting> kg C ha-1 per growing season
(0.5°x0.5°)

Ideally should be modeled with realistic land-use
history and initial carbon pools. Subject to extra
study.

Nitrous oxide emissions s n 2 o - < c r o p > -<irrigation setting> kg N2O-N ha-1 per growing season
(0.5°x0.5°)

Ideally should be modeled with realistic land-use
history and initial carbon pools. Subject to extra
study.

Total N uptake (totalgrowing season sum) t n u p - < c r o p > -<irrigation setting> kg ha -1 yr -1 monthly (0.5°x0.5°) Nitrogen balance: uptake
Total N inputs (totalgrowing season sum) t n i n - < c r o p > -<irrigation setting> kg ha -1 yr -1 monthly (0.5°x0.5°) Nitrogen balance: inputs
Total N losses (totalgrowing season sum) t n l o s s - < c r o p > -<irrigation setting> kg ha -1 yr -1 monthly (0.5°x0.5°) Nitrogen balance: losses
Growing seasontemperature sum sumt_<crop> deg c-days yr-1 per growing season

(0.5°x0.5°)
Sum of daily mean temperature over growing season

Growing seasonradiation gsrsds_<crop> w m-2 yr-1 per growing season
(0.5°x0.5°)

Average growing season shortwave solar radiation

Growing seasonprecipitation gsprcp_<crop> mm ha-1 yr-1 per growing season Total growing season precipitation per crop
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(0.5°x0.5°)
Note: The reporting periods for some output variables were changed from “yearly” to “per growing season” in April 2019. Please be aware that
model outputs submitted before this date, may still contain yearly data. Some models (e.g., LPJmL) report outputs for additional crops ("cas"
cassava, "mil" millet, "nut" groundnut, "pea" peas, "rap" rapeseed, "sgb" sugar beet, "sug" sugarcane, "sun" sunflower, "mgr" managed grass). The
model EPIC-BOKU provides outputs for alternative PET equations (Hargreaves (hg), Penman-Monteith (pe), Priestley Taylor (pt), Baier-Robertson
(br)).
10.4 Experiments
10.4.1 Historic runs and validation experiment
Specification of the historical runSimulations for the historical period should be provided as pure crop runs (i.e. assuming the crop growing all over the world), based on theclimate input described in Section 4. For each crop, there should be a full irrigation run (firr) and a no-irrigation run (noirr). Within ISIMIP2a wealso ask for historical runs with three different degrees of harmonization as given in Table 27.
Table 27: Scenario settings for crop model simulations
Simulation CommentsDefault Model should use their individual “best representation” of the historical period with regard to sowing dates,harvesting dates, fertilizer application rates and crop varieties.Fully harmonized Simulations based on prescribed “present day” fertilization rates (available for download) and fixed planting andharvesting dates (also available for download). Modelers should have planting as closely as possible to these dates,but it may be admissible to use these dates as indicators for planting windows (depending on model specifics).Harmonized seasons with no Nconstraints For models with an explicit description of the nitrogen cycle: harmnon simulations should be run with nitrogen stressturned off completely or (if that’s not possible) with very high N application rates to make model results comparablebetween those GGCMs that have explicit N dynamics and those that do not.For models without the nitrogen cycle: harmnon and fullharm simulations are the same and do not need to beduplicated.



Each of these three variants should be combined with a no-irrigation and full irrigation assumption, resulting (for the models with an explicitrepresentation of the nitrogen cycle) in 6 runs for the respective climate input data set (cf. Table 6).
Specification of PET equationRunning simulations with different PET equations implicate submitting different version of your model, with a consequent different modelname; i.e. if you create a second set of simulations using Priestley Taylor PET equation, you shall use your <model-name> in the initial version,and <model-name>-pt in the second run. We recommend you these abbreviations: ‘hg’ for Hargreaves, ‘pe’ for Penman-Monteith, ‘pt’ forPriestley Taylor, and ‘br’ for Baier-Robertson.
Specification of the validation procedureFor the validation task the pure crop simulations should1) be masked by the following LU patterns: ”Dynamic MIRCA” (reconstruction of historical LU based on HYDE and MIRCA2000, see Section 4.3.2) averaging and aggregation will be performed in the post-processing and depending on what data we compare to. It could include de-trending(to compare with possibly de-trended observations).
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