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Introduction 
ISI-CFACT produces counterfactual climate data from past datasets for the ISIMIP project. 
Counterfactual climate is a hypothetical climate in a world without climate change. 
For impact models, such climate should stay as close as possible to the observed past, 
as we aim to compare impact events of the past (for which we have data) to the events in the                    
counterfactual. The difference between past impacts and counterfactual impacts is a proxy for             
the impacts caused by climate change. We run the following steps: 
 
1. We approximate the change in past climate through a model with three parts. Long-term               
trend, an ever-repeating yearly cycle, and a trend in the yearly cycle. Trends are induced by                
global mean temperature change. We use a Bayesian approach to estimate all parameters of              
the model and their dependencies at once, here implemented through pymc3. Yearly cycle and              
trend in yearly cycles are approximated through a finite number of modes, which are periodic in                
the year. The parameter distributions tell us which part of changes in the variables can be                
explained through global mean temperature as a direct driver. 
 
2. We do quantile mapping to map each value from the observed dataset to a value that we                  
expect it would have been without the climate-induced trend. Our hierarchical model approach             
provides us with a time evolution of our distribution through the time evolution of a               
gmt-dependent parameter. We first use this time-evolving distribution to map each value to its              
quantile in this time evolving distribution. We then use the distribution from a reference period in                
the beginning of our dataset where we assume that climate change did not play a role, to remap                  
the quantile to a value of the variable. This value is our counterfactual value. Quantile mapping                
is different for each day of the year because our model is sensitive to the yearly cycle and the                   
trend in the yearly cycle. This approach is illustrated Figure 1. 



 
Figure 1: Model for a climate variable with yearly cycle. Grey is the original data, red is our                  
estimation of change. Blue is the original data minus the parts that were estimated driven by                
global mean temperature change. 
 

 

 

Variables 
 
To avoid large relative errors in the daily temperature range as pointed out by Piani et al.                 
(2010), we de-trend the daily temperature range tasrange = tasmax - tasmin and the skewness               
of the daily temperature tasskew = (tas - tasmin) / tasrange and derive tasmin and tasmax from                 
tas, tasrange and tasskew. 
 
A counterfactual huss is derived from the counterfacual tas, ps and hurs using the equations of                
Buck (1981) as described in Weedon et al. (2010). 
 



 

Variable Short name Unit Statistical model 

Near-Surface Air 
Temperature 

tas K Gaussian 

Range of Daily 
Temperature  

tasrange K Gaussian 

Skewness of Daily 
Temperature 

tasskew 1 Gaussian 

Daily Minimum 
Near-Surface Air 
Temperature 

tasmin K Derived from tas, tasrange and 
tasskew 

Daily Maximum 
Near-Surface Air 
Temperature 

tasmax K Derived from tas, tasrange and 
tasskew 

Surface Downwelling 
Longwave Radiation 

rlds W / m² Gaussian 

Surface Downwelling 
Shortwave Radiation 

rsds W / m² Gaussian 

Surface Air Pressure ps Pa Gaussian 

Near-Surface Wind Speed sfcWind m / s  Weibull 

Precipitation pr kg / m² s Bernoulli-Gamma 

Near-Surface Relative 
Humidity 

hurs % Gaussian 

Near-Surface Specific 
Humidity 

huss kg / kg Derived from hurs, ps and tas 

 
Table 1: Specs of climate variables for the ISIMIP3b counterfactual climate datasets. The             
variables tasrange and tasskew are auxiliary variables to calculate tasmin and tasmax. 
 
 
 
 



Model 
 
A global mean temperature timeseries without yearly variations is used as predictor for the              
model. To generate this predictor, global mean temperature is preprocessed using singular            
spectrum analysis. 
 
The variables tas, rlds, and ps are modeled with a Gaussian distribution with a time varying                
mean value. The mean value is a linear function of the global mean temperature change plus a                 
yearly cycle. This yearly cycle is modeled with one mode for all variables except tasskew, where                
two modes are used. The parameters of the yearly cycle are also a linear function of the global                  
mean temperature. 
 
Tasrange and tasskew are modeled with a Gaussian distribution as described above. But those              
variables are bounded. Tasrange is positive and tasskew between 0 and 1. In the quantile               
mapping step, values that are close to the boundary can get mapped to values outside the                
defined range. To avoid this, such values are not quantile mapped with the effect that the                
counterfactual value is the same as the historic value in those cases. This happens only rarely,                
as the value has to be already close to the boundary which is unlikely for both variables. 
 
The variables hurs and rsds are also bounded, hurs is between 0 and 1 and rsds is always                  
non-negative. Those variables are also modeled with a Gaussian distribution. Values that are             
outside the defined range after quantile mapping are reset to the closest boundary value. 
 
The sfcWind variable is modeled with a Weibull distribution using two parameters. 
The shape parameter _alpha_ is assumed to be free of trend. 
Both parameters need to be positive. 
Therefore, the model output is transformed with the logistic function to produce positive outputs. 
 
Precipitation is modeled with a mixed Bernoulli-gamma distribution.  
This approach enables to model the probability of rain-days and precipitation amounts on rain              
days with one distribution. 
The Bernoulli-gamma distribution has three parameters. All three parameters are modeled as a             
linear function of the global mean temperature. 
The model does not contain a yearly cycle for any parameter. 



 

Results 
We here present summaries of each variable for both the original data based on GSWP3 and                
the GSWP3-W5E5, and the corresponding counterfactual. ISI-CFACT removes annual trends          
as well as trends in the yearly cycle. Hereby the trend is regarded with the global mean                 
temperature as independent variable. As a visual check, we show a map of the slope of a linear                  
trend with time as independent variable, relative to the standard deviation of the slope in all                
grid-cells (see Figure 2 and Figure 3). By construction, our method should reduce this relative               
slope to a value close to zero. The trend calculated for this visual check is based on a simpler                   
method that disregards the yearly-cycle of the variables. 
 



 
Figure 2: Maps of linear trends in historical (left) and counterfactual (right) climate for the               
GSWP3 dataset. The linear trends for hurs, huss, pr, ps, rlds are calculated with time as                
independent variable and without a yearly cycle. The grid-cell show the slope of that trend               
relative to the standard deviation of the slope in all grid-cells 



 
 
Figure 3: Same as Figure 2 for rsds, tas, tasmin, tasmax and sfcWind. 
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