The ISIMIP fire sector

Gitta Lasslop, Anne Gaedecke, Christopher Reyer

SENCKENBI world of biodivers

Cross-sectoral ISIMIP online Workshop 15-18 June 2020

Outline

- Intro: FireMIP and reasons to join ISIMIP
- Plans for simulations within ISIMIP
 - Protocol
 - □ Fire sector specific output variables
 - Model documentation
- Open points in the protocol:
 - daily variables?
 - Extended simulations?
- Ideas for manuscripts

Fire Model Intercomparison Project (FireMIP)

- Initiated by Almut Arneth, Sandy Harrison, Stijn Hantson
- International initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions.
- ^D Systematically understand and decrease uncertainty in fire model projections

Phase 1 provided simulations from 1700-2013

Major outcomes:

- Emission datasets for atmospheric modelling (van Marle et al. 2017, Li et al. 2019)
- Evaluation/Benchmarking (Forkel et al. 2019, Hantson et al. 2020)
- Sensitivity to forcing factors over the historical period (Teckentrup et al. 2019)
- Impact of fire on vegetation and the carbon cycle (Lasslop et al. 2020)

Reasons to join ISIMIP

- No fire regime projections with state of the art fire model ensemble exists
- Limited resources to prepare input data, bias correction of climate not trivial

ISIMIP:

- ^a Availability of forcing data and experience with future projections
- Increased visibility and possibility to share data across sectors
- ^D Future fate of fire regimes is important for various sectors

Simulations

- First focus on ISIMP 2b protocol
 - Reasons: Land use input is available, land use is a major uncertainty in fire simulations
- ISIMIP 3a would be interesting for attribution studies (counterfactual climate)

ISIMIP 2b fire sector protocol

Based on biome sector protocol

Simulations to separate out

- 1) effects of climate change (comparison to simulation with preindustrial climate and between different RCPs)
- 2) effects of CO2, in simulations with CO2 fixed at the value of 2005
- 3) effects of changes in socioeconomic factors (simulations with socioeconomic factors fixed at year 2005)
- additionally to biome sector protocol: simulations to separate out the effect of population density and land use change (fixed at 2005 level)
- no simulations for RCP8.5 as land use data not available (focus on RCP 2.6 and 6)
- do we need the extensions after 2100?

Fire sector specific output variables

Variable	Specifier	Unit	Resolution
Burnt Area Fraction	burntarea <pft total=""></pft>	%	0.5° grid daily, monthly
Burnt Area Fraction from Fire mediated land- cover change	burntareaLUC <total></total>	%	0.5° grid, monthly
Carbon Mass Flux into Atmosphere due to C Emission from Fire	ffire- <pft total=""></pft>	kg m-2 s-1	0.5° grid, monthly
Carbon Mass Flux into Atmosphere from Fire mediated land-cover change	ffireluc- <total></total>	kg m-2 s-1	0.5° grid, monthly
Fireline intensity	fireints- <total></total>	kW m ⁻¹	0.5° grid, monthly
Carbon in different fuel classes	cfuelxxx- <total></total>	kg m-2	0.5° grid, monthly
Combustion completeness in different fuel classes	ccfuelxxx- <total></total>	1	0.5° grid, monthly
Fuel moisture for different fuel classes	mfuelxxx- <total></total>	1	0.5° grid, monthly

Fire sector specific output variables

Variable	Specifier	Unit	Resolution
Number of fires	firenr- <total></total>	km-2	0.5° grid monthly
Fire-caused tree mortality	Firemortality <pft total=""></pft>	1	0.5° grid, monthly
Mean fire size	firesize- <total></total>	km-2	0.5° grid, monthly
Mean fire duration	fireduration <total></total>	S	0.5° grid, monthly
Mean rate of spread	fireros- <total></total>	m s ⁻¹	0.5° grid, monthly
Iginitions - human caused	ignhuman- <total></total>	km-2	0.5° grid, annual
Iginitions - lightning caused	ignlight- <total></total>	km-2	0.5° grid, monthly
Carbon emitted from peat fires	ffirepeat <total></total>	kg m-2 s- 1	0.5° grid, monthly

Daily output

- Crucial for looking into
 - Extremes
 - □ Changes in fire season length
- But: large data volume, difficulties in postprocessing
- Updated protocol: daily output only for burned area fraction
 - Per PFT?
 - Or per natural vegetation, pasture+rangelands, croplands?
 - Only for 30 years present day and end of century?
- Emissions possible?
 - Resolution important for aerosols (Marlier et al. 2014) -> air quality or atmospheric modelling applications
 - Only per gridcell values needed
- Add monthly maximum fire size, rate of spread?

Model documentation

- ^D What are the **main components of burned area computation**?
- ^D Which **sources of ignition** are included?
- Is fire ignition implemented as a random process?
- Is human influence on fire ignition and/or suppression included? How?
- If human ignitions are included for which conditions are the ignitions highest/lowest?
- How does fire spread?
- How is **fire duration** computed?
- B How does the model compute **fuel load**?
- List of fuel types
- **Fuel moisture** linked to soil moisture/air humidity/precip?
- ^D Which carbon pools are **combusted**?
- Is the **combustion completeness** constant or depends on what (fuel type, moisture?)

Model documentation

- Land-cover classes allowed to burn
- Are **peatland** fires included?
- Are **deforestation** or land clearing fires included?
- If croplands and pastures/rangelands burn, how are they different from grasslands, does the fire model differ for this PFT?
- Vegetation fire mortality: is it constant/constant per pft/depends on (for instance fire intensity, bark thickness, veg height)
- ^D What **input datasets** are used in the fire model and what are they used for?
- ^D What is the **time step** of the fire model?
- What is the **time step** of the exchange between fire and vegetation model? e.g. are carbon pools and cover fractions updated every day?
- What is the minimum/maximum burned area fraction at grid cell level? Over which time period?

Ideas for manuscripts

- Bow will fire regimes change in future? What are the drivers?
- ^D Future impact of fires on ecosystems (vegetation, carbon cycle)
- ^D Fire impact on society
- ^D Future fire emissions and their impacts on radiation and climate
- ^D short-term (e.g. seasonal) impacts of future fires
- Extremes: can we simulate extremes? In which regions will extreme events become more frequent?
- ^D Shrub/woody encroachment (Inter-sectorial with biomes sector?)
- Fire suppression? (additional simulations, simple technical solution 1 year no fire, 5 years no fire)
- Afforestation scenarios- resilience of carbon stocks in afforested regions to future fire (Inter-sectorial study with biomes sector?)
- Impacts of fire regime changes (prescribed present day fire regimes: possible for all modellig groups?)

Time plan

- ^D Finalize protocol 2b until end of month
- ^D First simulations until beginning of September?
- ^D First preliminary analysis until FireMIP workshop 20-22 October, 2020
- Over the next weeks: get in touch with modelling groups outside FireMIP (also fire models without DGVM, statistical models: do they diverge from DGVM projections?)
- ^o Over the next months: start advertise the simulations to find people who may want to use them
 - □ Atmospheric modeller
 - Ecologists
 - Pyrogenic carbon community
 - Paleo community?
 - □ Any more ideas?