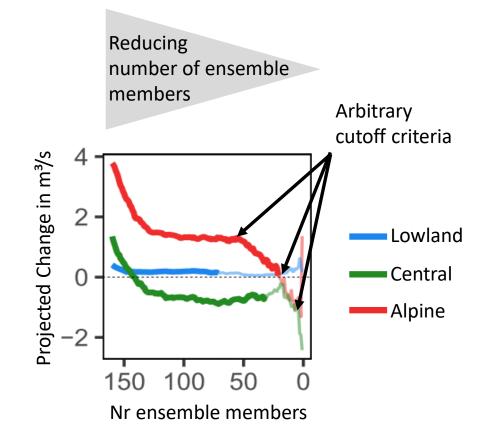


Abteilung Hydrologie und Wasserwirtschaft

Streamflow-based evaluation of climate model sub-selection methods



Bundesministerium für Bildung und Forschung Jens Kiesel^{1,2}, Philipp Stanzel³, Harald Kling³, Nicola Fohrer², Sonja Jähnig¹, Ilias Pechlivanidis⁴
¹ IGB Berlin, Department of Ecosystem Research
² CAU Kiel, Department of Hydrology & Water Res. Man.
³ AFRY Austria GmbH, Hydro Consulting, Vienna, Austria
⁴ Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

ISIMIP Workshop, 12.01.2021, Latest Results Session

The climate change ensemble selection problem

Projected average streamflow change in three German catchments

Kiesel et al. (2019) Ecol. Eng.

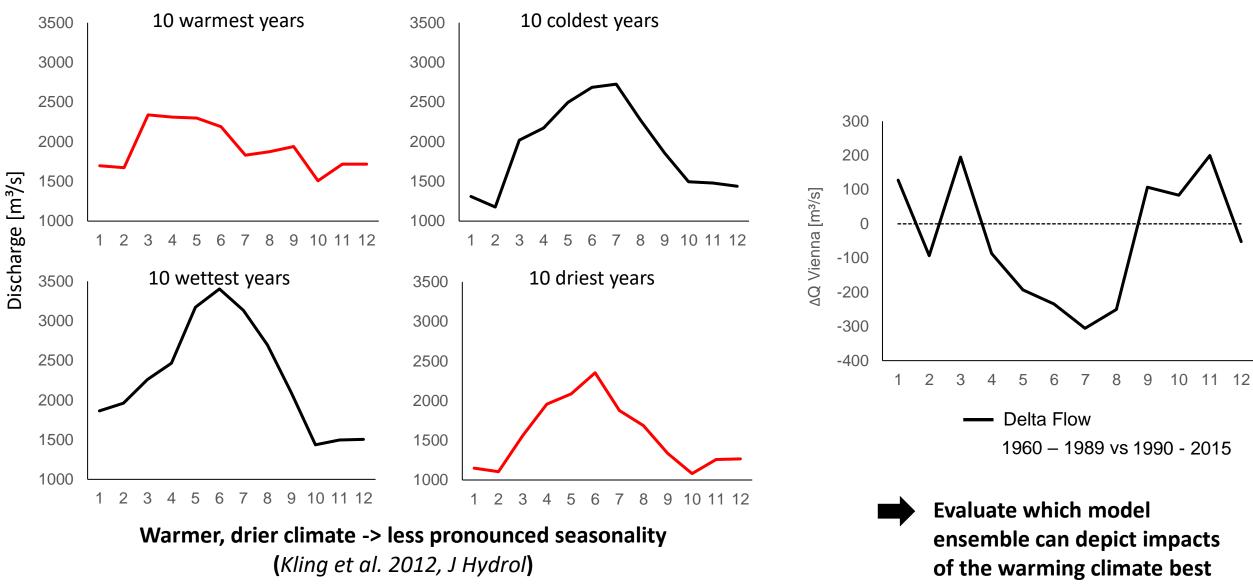
Sub-selection methods to deal with the ensemble problem

(Abramowitz et al. 2019, Earth Syst Dynam)

Sub-selection methods (discussed by Eyring et al. 2019, Nat Clim Chang)

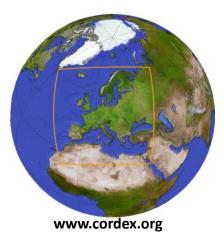
- democracy/full ensemble (Dem) (e.g. IPCC 2013)
- diversity of Global Circulation Models (DivG)
- diversity of Regional Climate Models (DivR)
- trading off information content and redundancy (MIMR) (*Pechlivanidis et al. 2018, WRR*)
- best performing climate depiction (bCl) (Ruane and McDermid 2017, Earth Perspectives)
- best performing variable of interest (bSf) (*Kiesel et al. 2019, Ecol Eng*)
- climate model weighing (sWGT) (Knutti et al. 2017, Geophys Res Lett)
- reliability ensemble average (REA) (*Tebaldi and Knutti 2007, Phil Trans R Soc A*)

Motivation


Is there a way to validate which of these sub-selection methods is "best"?

Approach

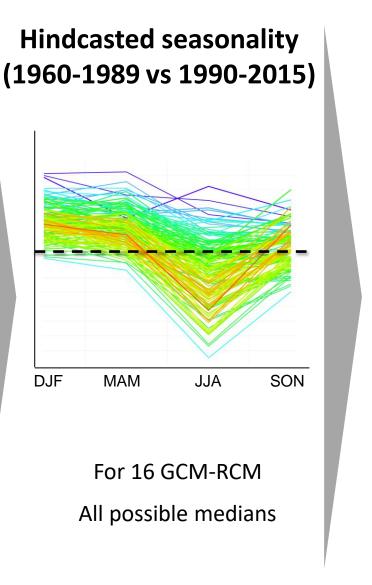
- Climate models are applied to predict the change from present to future
- We don't know the future...but we know the past impact of climate change (Blöschl et al. 2017, Science)
- Models that can't predict past climate change are less well suited to predict an aggravated, future change


Danube: Temporal dependence discharge seasonality

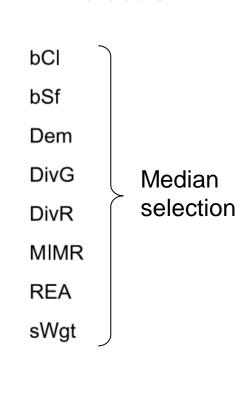
Observed Discharge: Danube at Vienna (1901-2007)

Climate model sub-selection assessment - Methodology

Hindcasted climate change data


16 combinations of GCM + RCM (RCP8.5)

Linear Scaling bias correction (1960-1990)


Jacob et al. 2014, Reg Env Change Stanzel et al. 2018, J Hydrol **COSERO Model Upper Danube** 01 01 2015

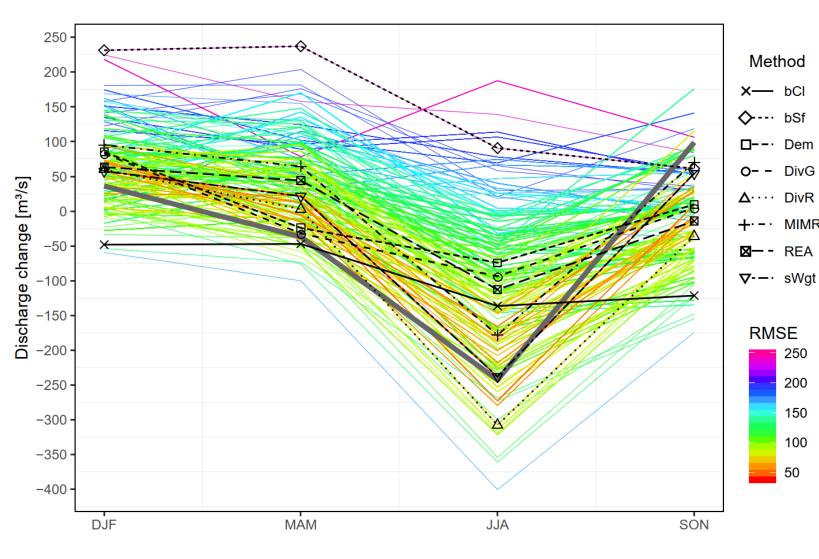
High-performance hydrological model (>100 yr) 5-step evaluation (*Krysanova et al. 2018*)

Kling et al. 2012, J Hydrol

Kiesel et al. 2020, Clim Change

Evaluation

RMSE against observed change

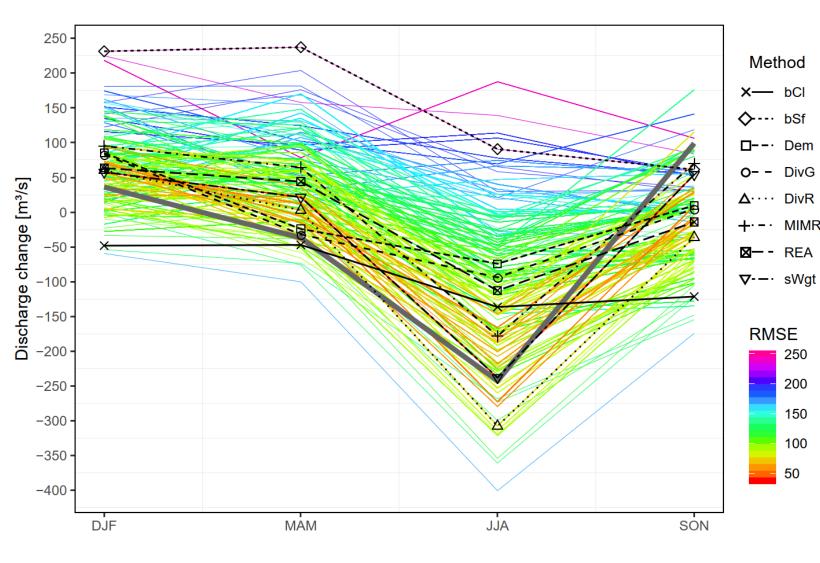

Kiesel et al. 2020, Clim Change

and Inland Fisheries

Research for the future of our freshwaters

Climate Models: Agreement with observed sign of change

GCM	RCM	Method	RMSE	Rank
KNMI-RACMO	ICHEC	sWgt	38	1
-	-	MIMR	68	2
CLMcom-CCLM	MOHC	DivR	78	3
DMI-HIRHAM	ICHEC	DivG	91	4
CLMcom-CCLM	CNRM		94	5
MPI-REMO	MPIr1		95	6
-	-	REA	96	7
-	-	Dem	99	8
KNMI-RACMO	MOHC		107	9
SMHI-RCA	ICHEC		117	10
CLMcom-CCLM	ICHEC	bCl	130	11
SMHI-RCA	MPI		141	12
IPSL-WRF	IPSL		142	13
CLMcom-CCLM	MPI		157	14
SMHI-RCA	CNRM		157	15
SMHI-RCA	MOHC		168	16
CNRM-ALADIN	CNRM		169	17
MPI-REMO	MPIr2	bSf	238	18
SMHI-RCA	IPSL		241	19


Correct reproduction of direction of change in all seasons

Research for the future of our freshwaters

6

Sub-selection methods: Agreement with observed change

GCM	RCM	Method	RMSE	Rank
KNMI-RACMO	ICHEC	sWgt	38	1
-	-	MIMR	68	2
CLMcom-CCLM	MOHC	DivR	78	3
DMI-HIRHAM	ICHEC	DivG	91	2
CLMcom-CCLM	CNRM		94	5
MPI-REMO	MPIr1		95	6
-	-	REA	96	7
-	-	Dem	99	8
KNMI-RACMO	MOHC		107	ę
SMHI-RCA	ICHEC		117	1(
CLMcom-CCLM	ICHEC	bCl	130	11
SMHI-RCA	MPI		141	12
IPSL-WRF	IPSL		142	13
CLMcom-CCLM	MPI		157	14
SMHI-RCA	CNRM		157	1:
SMHI-RCA	MOHC		168	16
CNRM-ALADIN	CNRM		169	17
MPI-REMO	MPIr2	bSf	238	18
SMHI-RCA	IPSL		241	19

Best RMSE Worst RMSE

Research for the future of our freshwaters

7

Conclusions

- Splitting historic observations into a reference and evaluation period can be beneficial to assess historic climate change impact
- Wide range of performance differences between sub-selection methods indicates that the selection matters
- Methods maintaining and maximizing diversity and information content clearly outperformed methods that reproduce historical climate or streamflow best
- To yield more robust conclusions, we suggest to test the proposed methods using multiple hydrological models in multiple basins located under a strong hydro-climatic gradient

Thank you!

Kiesel J, Stanzel P, Kling H, Fohrer N, Jähnig S, Pechlivanidis I. 2020. Streamflow-based evaluation of climate model sub-selection methods. Climatic Change, <u>https://doi.org/10.1007/s10584-020-02854-8</u>. In: Krysanova V, Hattermann FF, Kundzewicz ZW. 2020. How evaluation of hydrological models influences results of climate impact assessment—an editorial.

