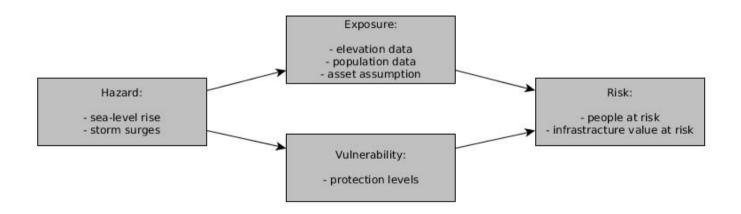
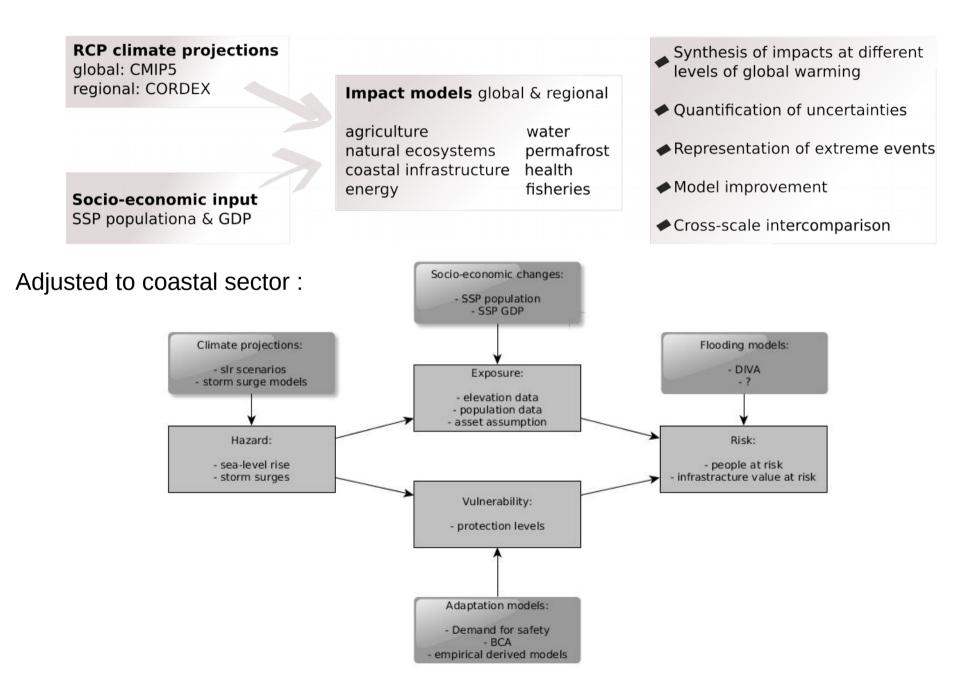
# ISIMIP coastal infrastructure sector An overview

### Daniel Lincke, Jochen Hinkel Global Climate Forum

### ISIMIP2 Workshop June 22<sup>nd</sup>, 2016 Potsdam, Germany


### Global Climate Forum




# The ISIMIP approach

| RCP climate projections<br>global: CMIP5 |                                                             |                               | <ul> <li>Synthesis of impacts at different<br/>levels of global warming</li> </ul> |  |
|------------------------------------------|-------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|--|
| regional: CORDEX                         | Impact models globa                                         | al & regional                 | <ul> <li>Quantification of uncertainties</li> </ul>                                |  |
|                                          | agriculture<br>natural ecosystems<br>coastal infrastructure | water<br>permafrost<br>health | Representation of extreme event                                                    |  |
| Socio-economic input                     | energy                                                      | fisheries                     | <ul> <li>Model improvement</li> </ul>                                              |  |
| SSP populationa & GDP                    |                                                             |                               | Cross-scale intercomparison                                                        |  |

#### Adjusted to coastal sector :



# The ISIMIP approach



# **ISIMIP Fast Track**

#### **ISIMIP** Fast Track looked at hazard and exposure :

|      | Population | [millions] | GDP [billion US\$/yr] |           |
|------|------------|------------|-----------------------|-----------|
|      | 2050       | 2100       | 2050                  | 2100      |
| SSP1 | 8,400      | 7,200      | 295,000               | 771,000   |
| SSP2 | 9,300      | 9,800      | 260,000               | 685,000   |
| SSP3 | 10,300     | 14,100     | 334,000               | 667,000   |
| SSP4 | 9,400      | 11,800     | 242,000               | 462,000   |
| SSP5 | 8,500      | 7,700      | 348,000               | 1,207,000 |

Table 1: Global population and GDP in 2050 and 2100 under different SSPs

Table 2: Global exposed area and population below 2, 4 and 8 m elevation in the base year (1995) for the different DEMs and population distribution models

| Digital   | Population   | Exposure below 2m                  |            | Exposure below 4m                  |            | Exposure below 8m                  |            |
|-----------|--------------|------------------------------------|------------|------------------------------------|------------|------------------------------------|------------|
| elevation | distribution | Area                               | Population | Area                               | Population | Área                               | Population |
| model     |              | [10 <sup>3</sup> km <sup>2</sup> ] | [millions] | [10 <sup>3</sup> km <sup>2</sup> ] | [millions] | [10 <sup>3</sup> km <sup>2</sup> ] | [millions] |
| GLOBE     | GRUMP        | 2,465                              | 323        | 3,559                              | 564        | 4,425                              | 757        |
| GLOBE     | LANDSCAN     | 2,465                              | 328        | 3,559                              | 570        | 4,425                              | 771        |
| SRTM      | GRUMP        | 1,270                              | 123        | 2,269                              | 352        | 3,220                              | 542        |
| SRTM      | LANDSCAN     | 1,270                              | 120        | 2,269                              | 353        | 3,220                              | 549        |

# **ISIMIP Fast Track**

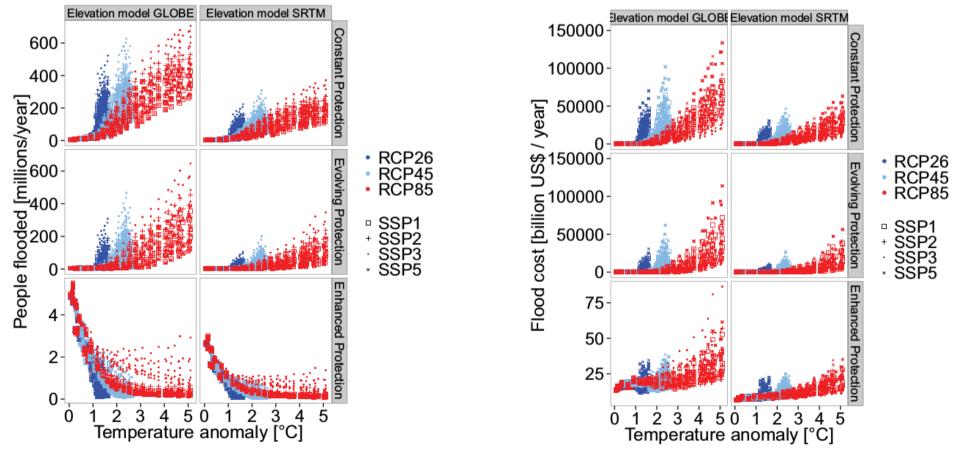

### ISIMIP Fast Track looked at hazard and exposure :

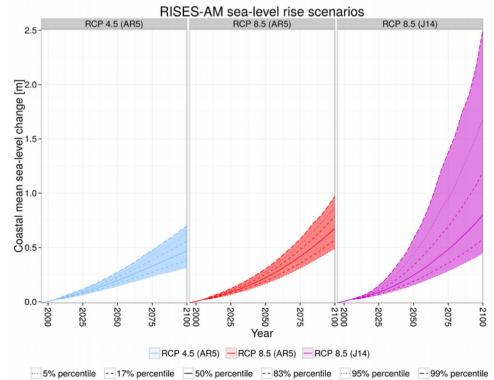
Table 3: Sea level projections used as input for the DIVA model. Provided are the median as well as the 5% and 95% quantiles in parenthesis (see methods)

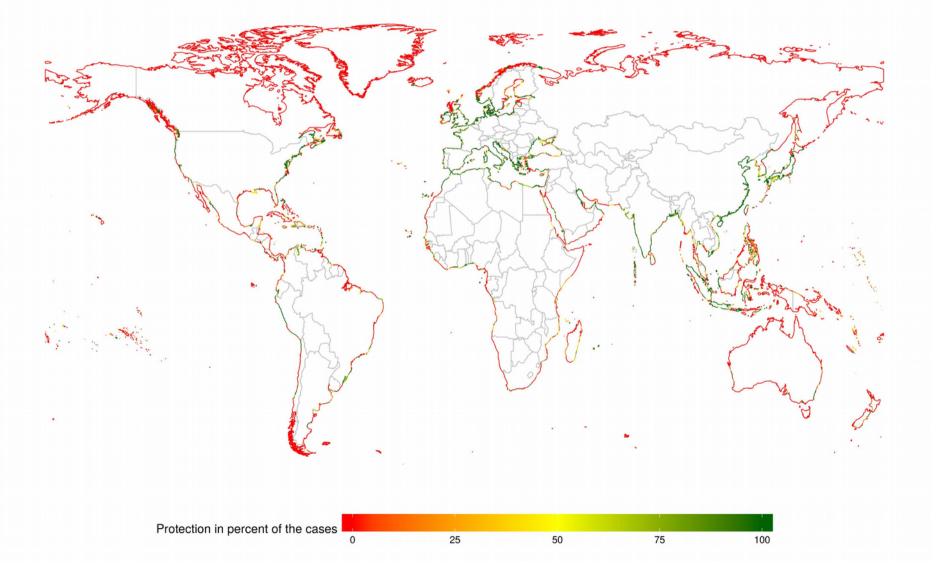
| Scenario | Model          | Steric [cm] |            | Land-ic    | ce [cm]     |            | Total [cm]  |
|----------|----------------|-------------|------------|------------|-------------|------------|-------------|
|          |                |             | Glacier    | Antarctica | Greenland   | Sum        |             |
| RCP26    | HadGEM2-ES     | 14          | 14 (14,15) | 7 (2,23)   | 0 (0, 0)    | 21 (16,39) | 35 (29,52)  |
|          | IPSL-CM5A-LR   | 12          | 12 (12,12) | 7 (2,23)   | 0 (0, 0)    | 19 (13,36) | 30 (25,47)  |
|          | MIROC-ESM-CHEM | 19          | 13 (13,13) | 7 (2,23)   | 0 (0, 0)    | 20 (14,36) | 39 (34,56)  |
|          | NorESM1-M      | 15          | 11 (11,12) | 7 (2,23)   | 0 (0, 0)    | 18 (13,35) | 34 (28,50)  |
|          | ALL            | 15          | 13 (12,13) | 7 (2,23)   | 0 (0, 0)    | 20 (14,36) | 35 (29,51)  |
| RCP45    | HadGEM2-ES     | 18          | 17 (16,19) | 8 (2,29)   | 7 (5, 8)    | 32 (23,56) | 50 (41,75)  |
|          | IPSL-CM5A-LR   | 18          | 14 (14,15) | 8 (2,29)   | 8 (7, 10)   | 30 (22,53) | 48 (40,71)  |
|          | MIROC-ESM-CHEM | 25          | 15 (14,16) | 8 (2,29)   | 9 (7, 11)   | 32 (24,56) | 57 (48,81)  |
|          | NorESM1-M      | 20          | 13 (13,14) | 8 (2,29)   | 3 (2, 4)    | 24 (17,49) | 44 (37,67)  |
|          | ALL            | 20          | 15 (14,16) | 8 (2,29)   | 7 (5, 8)    | 29 (21,53) | 50 (42,73)  |
| RCP85    | HadGEM2-ES     | 29          | 22 (20,26) | 10 (2,41)  | 12 (10, 14) | 44 (31,81) | 72 (60,110) |
|          | IPSL-CM5A-LR   | 30          | 18 (17,20) | 10 (2,41)  | 15 (12, 18) | 43 (31,79) | 73 (61,109) |
|          | MIROC-ESM-CHEM | 38          | 19 (18,21) | 10 (2,41)  | 19 (15, 23) | 49 (36,85) | 86 (74,123) |
|          | NorESM1-M      | 32          | 16 (16,17) | 10 (2,41)  | 6 (5, 8)    | 33 (23,66) | 64 (55,97)  |
|          | ALL            | 32          | 19 (18,21) | 10 (2,41)  | 13 (10, 16) | 42 (30,78) | 74 (62,110) |

# **ISIMIP Fast Track**

### ISIMIP Fast Track looked at hazard and exposure :



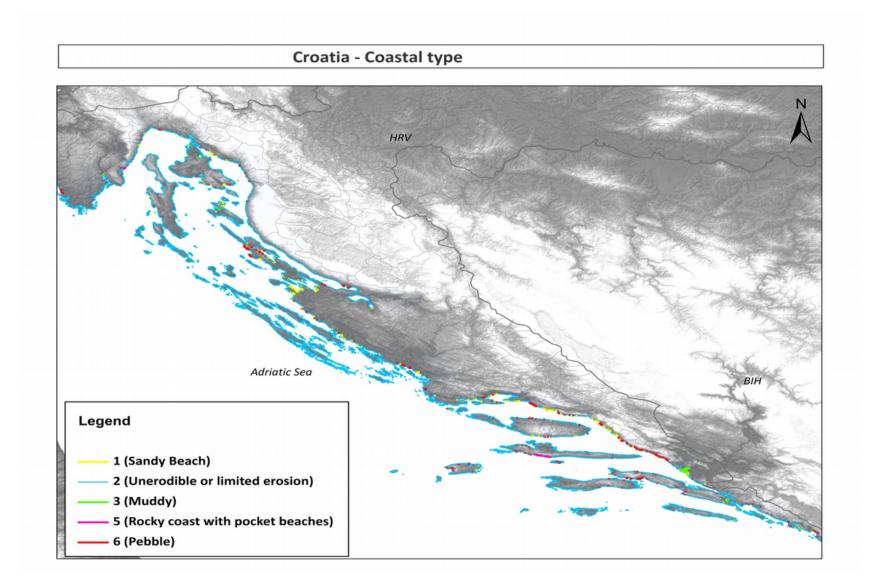

**Fig. 1.** Global expected number of people flooded versus global mean temperature anomaly with respect to 1985-2005.

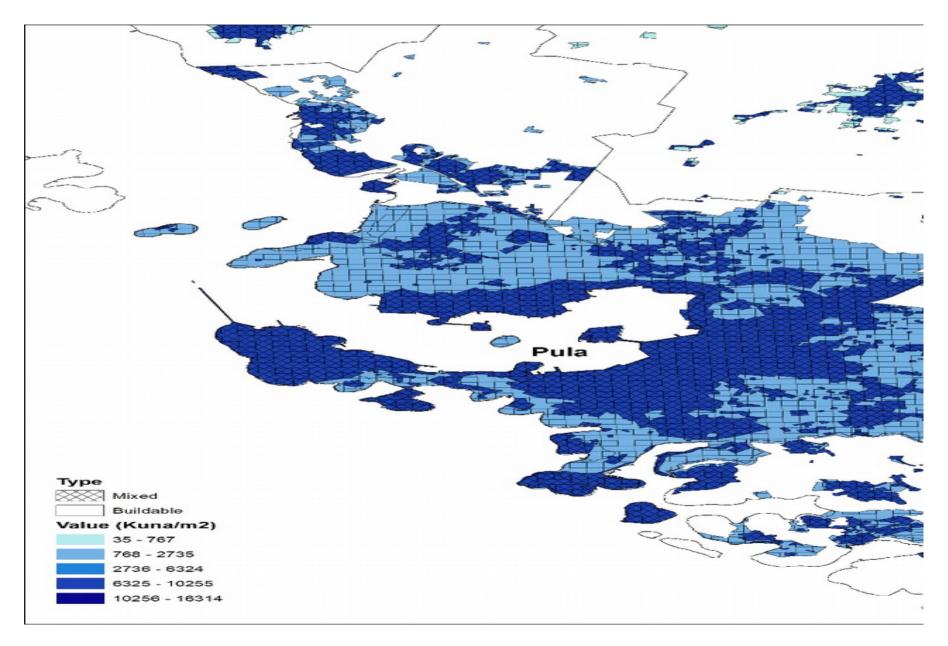

Fig. 2. Global expected sea flood cost versus global mean temperature anomaly with respect to 1985-2005.

Hinkel et al. 2014

### **RISES-AM**:

- High-end sea-level rise: models versus expert judgement (Jevrejeva et al., 2014)
- Coastal adaptation descriptive (demand function for safety) versus prescriptive approaches (BCA) (Lincke and Hinkel, forthcoming)
- Comparison of extreme water level models (tide/surge): DINAS-COAST versus GTSR (Muis et al. (2016)



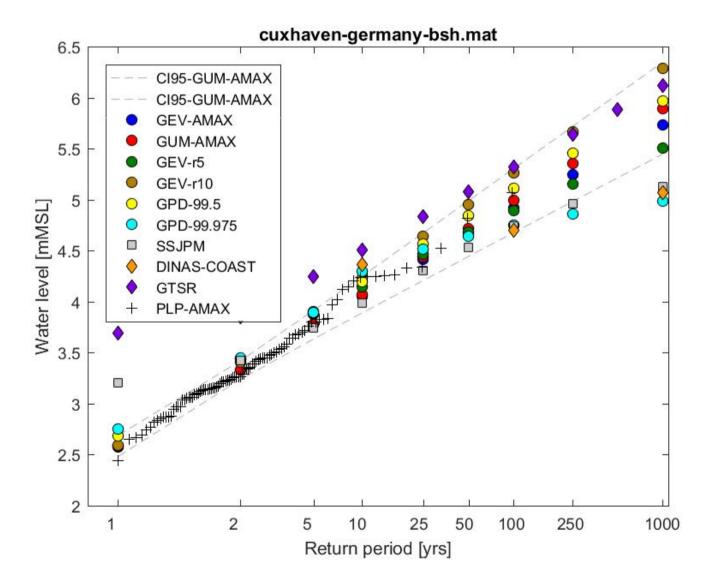




#### Lincke & Hinkel, forthcoming





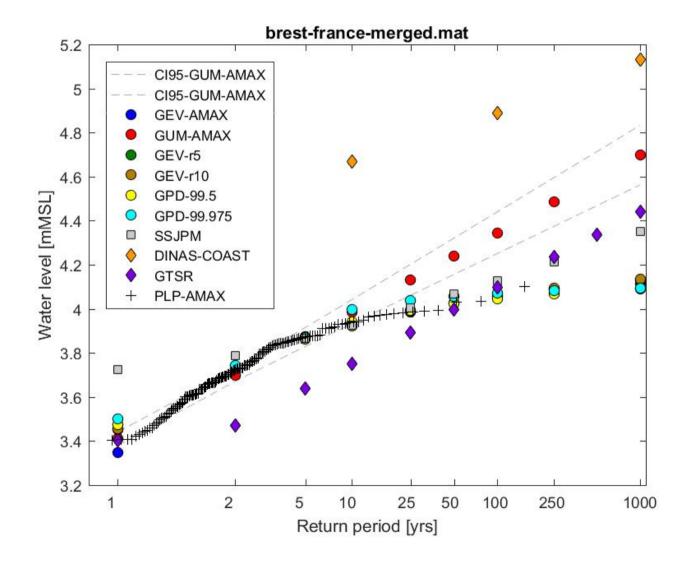





# Future ISIMIP work?

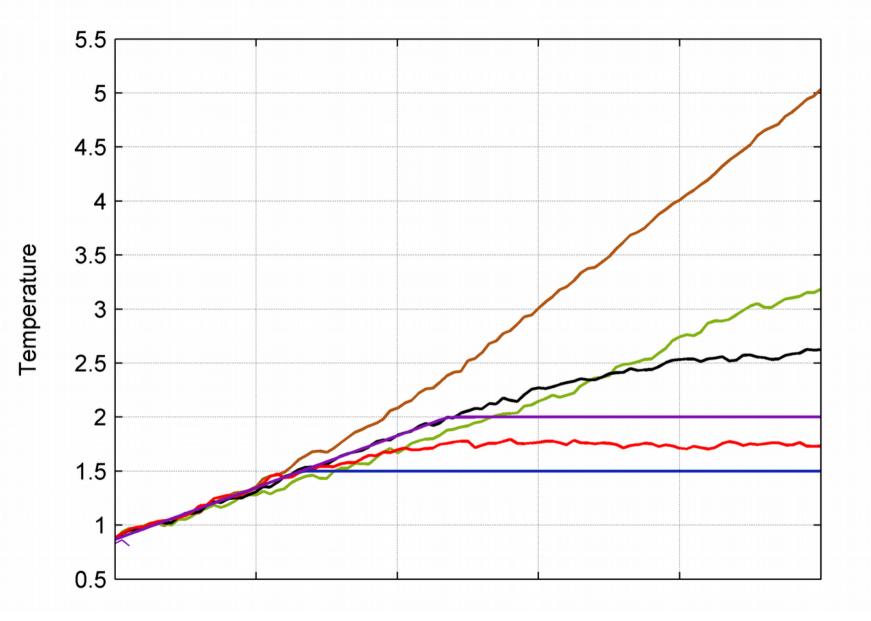
| Dimension                | ISIMIP Fast Track<br>(Hinkel et al., 2014)                                                                | ISIMIP2-global                                                                                        | ISIMIP2-Europe                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Geographical coverage    | Global                                                                                                    | Global                                                                                                | Europe                                                                                                                 |
| Socio-economic scenarios | - All SSPs                                                                                                | - SSP2                                                                                                |                                                                                                                        |
| Mean sea-level scenarios | - Process-model-based                                                                                     | <ul> <li>Process-model-based</li> <li>Land ice contribution</li> <li>from expert judgement</li> </ul> |                                                                                                                        |
| Extreme sea-levels       | - DINAS-COAST                                                                                             | - Muis et al. (2016)<br>- DINAS-COAST                                                                 | <ul> <li>Muis et al. (2016)</li> <li>Wahl et al.<br/>(forthcoming)</li> <li>(Vousdoukas et al.,<br/>2016a)</li> </ul>  |
| Flood propagation        | - Hydrological connected<br>bathtub                                                                       | <ul> <li>Hydrological connected<br/>bathtub</li> <li>Water level attenuation<br/>slopes</li> </ul>    | Hydrological connected<br>bathtub<br>- Water level attenuation<br>slopes<br>- JRC Model?<br>(Vousdoukas et al., 2016b) |
| Exposure                 | <ul> <li>2 DEMs: GLOBE and<br/>SRTM</li> <li>2 population datasets:<br/>GRUMP and<br/>LANDSCAN</li> </ul> | - SRTM and GRUMP                                                                                      | - SRTM and GRUMP                                                                                                       |
| Vulnerability            | - Depth-damage function                                                                                   | - Depth-damage function                                                                               | - Depth-damage function                                                                                                |
| Adaptation model         | - Protection: descriptive<br>(demand-for-safety)                                                          | <ul><li>Protection: descriptive</li><li>Protection: prescriptive</li><li>(BCA)</li></ul>              | <ul><li>Protection: descriptive</li><li>Protection: prescriptive</li><li>(BCA)</li></ul>                               |

# Future ISIMIP work?


Extreme water levels:

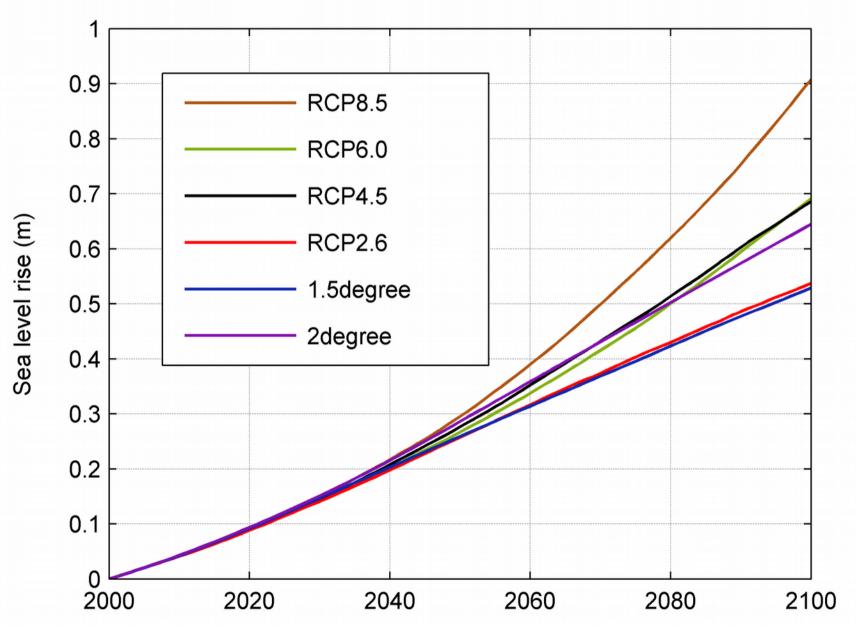


Wahl et al. 2016


# Future ISIMIP work?

Extreme water levels:




Wahl et al. 2016

1.5°C?



Lowe et al. Forthcoming

1.5°C?



Lowe et al. Forthcoming