

ISIMIP Biome/Permafrost Meeting Agenda

- status update biomes sector (C. Reyer, all modellers)
- valid variable ranges for biomes models / Evaluation with ilamb (C. Reyer)
- paper presentations:
 - First analysis of ISIMIP3b simulation from VISIT (and presentation of ISIMIP2b paper idea) (A. Ito)
 - Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850-2014 (Y Zhang)
 - Future greenhouse gas balance of northern peatlands: evidence from a multi-model assessment (C Qiu)
- discussion of peatland sector (A. Gädeke, A Galego-Sala, C. Reyer)
- status update permafrost sector (A. Gädeke) and related permafrost activities (E. Burke, J. Kirchner)

Status of 3a/3b simulations

Model	Status	Other Sectors?	Comments	Paper Plans
CARAIB	depending on funding and time	Fire?		
CLM5.0	starts later 2020 or march 2021	Permafrost, Fire, water	needs six-hourly forcing	MSc students works on fire attribution based on ISIMIP2b data
DLEM	have downloaded the driving data	Fire		
JULES	working on JULES ISIMIP 3a runs	Permafrost, Fire, water?	coordination with JULES team from Greece	
LPJ-GUESS	runs are planned	Permafrost, Fire		work on 2b biome shifts using PFT-level output
LPJmL	claifying who will do the runs at PIK, C Müller for agriculture	Permafrost, Fire, water	Fire maybe another version, agriculture by Jonas/Christoph with different model version	
ORCHIDEE	forcing downloaded, aims to provide 3a output in December 2020	Permafrost, Fire, water		dynamics of permafrost soil carbon from a few LSMs (including 3a and hopefully 3b output).
VEGAS	will contribute		needs hourly forcing	
VISIT	finish simulations by end of October 2020	Permafrost?, fire?		climatic impacts on ecosystems in Asia, including that through fires

Please update your model @ https://docs.google.com/spreadsheets/d/1RcgoZMI4KiLPDKB41ZWONSKjR-LPboLn0vnQmnbPYo/edit?usp=sharing

Environmental Research Letters

OPEN ACCESS

RECEIVED

3 October 2019

REVISED

25 January 2020

LETTER

Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems

Akihiko Ito^{1,2}, Christopher P O Reyer³, Anne Gädeke³, Philippe Ciais⁴, Jinfeng Chang⁴, Min Chen⁵, Louis François⁶, Matthew Forrest⁷, Thomas Hickler⊓, Sebastian Ostberg³, Hao Shi⁵, Wim Thiery¹, and Hanqin Tian⁵

- ¹ National Institute for Environmental Studies, Tsukuba 305-8506, Japan
- ² Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
- Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg, 14412 Potsdam, Germany
- 4 Laboratoire des Sciences du Climate et de l'Environment, IPSL-LSCE, CEA-UVSQ-UPSACLAY, Gif sur Yvette F-91191, France
- ⁵ Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, United States of America
- ⁶ U R SPHERES, Univeristé de Liège, Liège B-4000, Belgium
- ⁷ Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Department of Physical Geography, Goethe University, Altenhöferallee1, D-60438 Frankfurt am Main, Germany
- International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, United States of America
- ETH Zurich, Institute for Atmospheric and Climate Science, Universitaetsstrasse 16, 8092 Zurich, Switzerland
- Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Pleinlaan 2, B-1050 Brussels, Belgium

E-mail: itoh@nies.go.jp

Keywords: biome sector, ISIMIP2b, northern high latitudes, Paris agreement, climatic impacts

Supplementary material for this article is available online

JGR Biogeosciences

RESEARCH ARTICLE 10.1029/2019JG005252

Shufen Pan and Jia Yang, equal contribution

Key Points

- Impacts of temperature or precipitation extremes on carbon fluxes could be amplified due to their interactive effects
- Hot extremes lead to a larger carbon loss in tropics while ecosystems in the arid and semi-arid zones show the largest sensitivity to precipitation
- Models simulated larger sensitivity of ecosystem productivity to precipitation than satellite product, particularly in tropics

Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation

Shufen Pan¹ [D, Jia Yang^{1,2}, Hanqin Tian¹ [D, Hao Shi^{1,3} [D, Jinfeng Chang⁴ [D, Philippe Ciais⁴, Louis Francois⁵, Katja Frieler⁶ [D, Bojie Fu³, Thomas Hickler^{7,8} [D, Akihiko Ito⁹ [D, Kazuya Nishina⁹ [D, Sebastian Ostberg⁶ [D, Christopher P.O. Reyer⁶ [D, Sibyll Schaphoff⁶ [D, Jörg Steinkamp^{7,10} [D, and Fang Zhao⁶]

¹International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA, ²Department of Forestry, Mississippi State University, Mississippi State, MS, USA, ³Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences, Beijing, China, ⁴Laboratoire des Sciences du Climat et de l'Environmement, Gif-sur-Yvette, France, ⁵UR-SPHERES, Université de Liège, Liège, Belgium, ⁶Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany, ⁷Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, ⁸Department of Physical Geography, Goethe University, Frankfurt am Main, Germany, ⁹National Institute for Environmental Studies, Tsukuba, Japan, ¹⁰Johannes Gutenberg-University Mainz, Mainz, Germany

Recent Papers (Jan 2021)

Earth's Future

RESEARCH ARTICLE

10.1029/2020EF001616

Key Points:

- · We quantify the pure effect of climate change on the exposure to extreme climate impact events, for both historical and future
- · Global warming increases the global population exposure to river floods, tropical cyclones, crop failure, wildfires, droughts, and
- The largest increases in exposure are projected for tropical and subtropical regions

Supporting Information S1

Correspondence to:

S. Lange and K. Frieler, katja.frieler@pik-potsdam.de

time periods

- heatwaves

Supporting Information:

slange@pik-potsdam.de;

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

Stefan Lange¹, Jan Volkholz¹, Tobias Geiger^{1,2}, Fang Zhao³, Iliusi Vega¹, Ted Veldkamp^{4,5}, Christopher P. O. Reyer¹, Lila Warszawski¹, Veronika Huber⁶, Jonas Jägermeyr^{1,7,8}, Jacob Schewe¹, David N. Bresch^{9,10}, Matthias Büchner¹, Jinfeng Chang^{5,11}, Philippe Ciais¹¹, Marie Dury¹², Kerry Emanuel¹³, Christian Folberth⁵ Dieter Gerten^{1,14}, Simon N. Gosling¹⁵, Manolis Grillakis¹⁶, Naota Hanasaki¹⁷ Alexandra-Jane Henrot¹², Thomas Hickler^{18,19}, Yasushi Honda²⁰, Akihiko Ito¹⁷, Nikolay Khabaroy D. Aristeidis Koutroulis (10). Wenfeng Liu 11.22 Christoph Müller (10). Kazuya Nishina¹⁷, Sebastian Ostberg¹, Hannes Müller Schmied^{18,19}, Sonia I. Seneviratne²³, Tobias Stacke²⁴, Jörg Steinkamp^{19,25}, Wim Thiery^{23,26}, Yoshihide Wada⁵ Sven Willner On Hong Yang^{22,27}, Minoru Yoshikawa²⁸, Chao Yue^{11,29} and Katja Frieler¹

¹Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany, ²Climate and Environment Consultancy, Deutscher Wetterdienst (DWD), Stahnsdorf, Germany, ³School of Geographic Sciences, East China Normal University, Shanghai, China, 4Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, ⁵International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, ⁶Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain, ⁷NASA Goddard Institute for Space Studies, New York, NY, USA, 8 Department of Computer Science, University of Chicago, Chicago, IL, USA, 9Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland, 10Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland, 11 Laboratoire des Sciences du Climat et de

Global **Biogeochemical Cycles**

Main, Germany

RESEARCH ARTICLE

10.1029/2020GB006589

- · The uncertainty in soil organic carbon (SOC) change is dominated by differences between model structure rather than by climate
- · Soil input changes explain most variations in projected SOC change for natural vegetation across models at global and region
- · The effective reduction in constrained SOC change depends on climate forcing and region considered

Supporting Information:

· Supporting Information S1

Correspondence to:

xuwenfangfang@163.com

Abstract Soil organic carbon changes (ΔSOC) are regulated by climate and land use change. Here, we analyze regional and global ΔSOC from 1861 to 2099 based on five terrestrial biosphere model (TBM) simulations of the Inter-Sectoral Impact Model Intercomparison Project Phase 2b. The TBMs were driven by harmonized gridded land use change and bias-adjusted climate forcing data from different general circulation models (GCMs) for climate scenarios RCP 2.6 and RCP 6.0. Between 2005 and the end of this

Reducing Uncertainties of Future Global Soil Carbon

Wenfang Xu¹ [0], Jinfeng Chang¹ [0], Philippe Ciais¹ [0], Bertrand Guenet¹ [0], Nicolas Viovy¹ [0],

1 Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Saclay, France, 2 National

Institute for Environmental Studies, Tsukuba, Japan, 3Potsdam Institute for Climate Impact Research (PIK), Member of

the Leibniz Association, Potsdam, Germany, 4International Center for Climate and Global Change Research, School of

Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA, 5Senckenberg Biodiversity and Climate Research

Centre (BiK-F), Frankfurt am Main, Germany, 6Department of Physical Geography, Goethe University, Frankfurt am

Akihiko Ito² . Christopher P. O. Reyer³ . Hanqing Tian⁴ . Hao Shi⁴ . Katja Frieler³ .

Matthew Forrest [10], Sebastian Ostberg [10], Sibyll Schaphoff [10], and Thomas Hickler [10]

Responses to Climate and Land Use Change

With Emergent Constraints

Submitted papers / drafts/ ideas (2b data)

- 1. Shi H, H Tian, N Pan, CPO Reyer, P Ciais, J Chang, M Forrest, K Frieler, B Fu, A Gädeke, T Hickler, A Ito, S Ostberg, S Pan, M Stevanovic, J Yang (submitted) *Saturation of global terrestrial carbon sink under two contrasting warming scenarios*. Global Biogeochemical Cycles
- 2. Thiery W, St Lange, J Rogelj, C-F Schleussner, L Gudmundsson, SI Seneviratne, K Frieler, K Emanuel, T Geiger, DN Bresch, F Zhao, S Willner, M Büchner, J Volkholz, N Bauer, J Chang, P Ciais, M Dury, SN Gosling, N Hanasaki, A Henrot, T Hickler, V Huber, A Ito, J Jägermeyr, N Khabarov, W Liu, M Mengel, C Müller, H Müller Schmied, S Ostberg, CPO Reyer, T Stacke, Y Wada (submitted) Age-dependent extreme event exposure. Science
- 3. Shi/Tian et al. Carbon and Water Cycle China: first analyses ongoing
- 4. Papers/M.Sc. Thesis ongoing with Thomas Hickler/Matt Forrest, Wim Thiery

Valid variable ranges for biomes models

• Valid ranges for output variables: "based on scientific experience and thorough judgement of modellers as well as extremes known from observations. Since those ranges will be applied to check the output of historical simulations as well as future projections, please also consider the potential impact of future climate and socioeconomic change on the ranges."

Contributions can be made via a cloud spreadsheet [1] or per pull request to our GitHub protocol repository [2].

[1] Google Spreadsheet for valid ranges

[2] https://github.com/ISI-MIP/isimip-protocol-3 in definitions/variable.json, e.g. https://github.com/ISI-MIP/isimip-protocol-3/blob/f63d76036c4cbced3678a9ca6ff115afef8d2cde/definitions/variable.json#L33

Valid variable ranges for biomes models

Variable	Long Name	Unit	valid_min	valid_max	Comment (please indicate source of comment)
anthday	Anthesis Date	day of year of anthesis	?	?	
biom	Total Above Ground Biomass Dry Matter Yields	t ha-1 per growing season	0	?	
burntarea	Burnt Area Fraction	%	0	100	
ccwd	Carbon Mass in Coarse Woody Debris	kg m-2	?	?	
cleaf	Carbon Mass in Leaves	kg m-2	?	?	
clitterag	Carbon Mass in Above Ground Litter Pool	kg m-2	?	?	
clitterbg	Carbon Mass in Below Ground Litter Pool	kg m-2	?	?	
cproduct	Carbon in Products of Land Use Change	kg m-2	?	?	
croot	Carbon Mass in Roots	kg m-2	?	?	
csoil	Carbon Mass in Soil Pool	kg m-2	?	?	
cveg	Carbon Mass in Vegetation	kg m-2	?	?	

• Ilamb?

Status of 3a/3b simulations

Model	Status	Other Sectors?	Comments	Paper Plans
CARAIB	depending on funding and time	Fire?		
CLM5.0	starts later 2020 or march 2021	Permafrost, Fire, water	needs six-hourly forcing	MSc students works on fire attribution based on ISIMIP2b data
DLEM	have downloaded the driving data	Fire		
JULES	working on JULES ISIMIP 3a runs	Permafrost, Fire, water?	coordination with JULES team from Greece	
LPJ-GUESS	runs are planned	Permafrost, Fire		work on 2b biome shifts using PFT-level output
LPJmL	claifying who will do the runs at PIK, C Müller for agriculture	Permafrost, Fire, water	Fire maybe another version, agriculture by Jonas/Christoph with different model version	
ORCHIDEE	forcing downloaded, aims to provide 3a output in December 2020	Permafrost, Fire, water		dynamics of permafrost soil carbon from a few LSMs (including 3a and hopefully 3b output).
VEGAS	will contribute		needs hourly forcing	
VISIT	finish simulations by end of October 2020	Permafrost?, fire?		climatic impacts on ecosystems in Asia, including that through fires

Update your model @ https://docs.google.com/spreadsheets/d/1RcgoZMI4KiLPDKB41ZWONSKjR-LPboLn0vnQmnbPYo/edit?usp=sharing

ISIMIP Biome/Permafrost Meeting Agenda

- status update biomes sector (C. Reyer, all modellers)
- valid variable ranges for biomes models / Evaluation with ilamb (C. Reyer)
- paper presentations:
 - First analysis of ISIMIP3b simulation from VISIT (and presentation of ISIMIP2b paper idea) (A. Ito)
 - Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850-2014 (Y Zhang)
 - Future greenhouse gas balance of northern peatlands: evidence from a multi-model assessment (C Qiu)
- discussion of peatland sector (A. Gädeke, A Galego-Sala, C. Reyer)
- status update permafrost sector (A. Gädeke) and related permafrost activities (E. Burke, J. Kirchner)

Permafrost sector update

- Published paper in collaboration with global/regional water sector
- Master thesis finalized (J.Kirchner)
- One paper under review in ERL "Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios" (presentation tomorrow, 12.01., 12-13:30)
- Model contributing to the permafrost sector in ISIMIP3: CLM5.0, ORCHIDEE, JULES, MATSIRO, LPJmL (?), LPJ-GUESS (?)

Climatic Change (2020) 163:1329-1351 https://doi.org/10.1007/s10584-020-02892-2

Performance evaluation of global hydrological models in six large Pan-Arctic watersheds

Anne Gädeke 1 \odot • Valentina Krysanova 1 • Aashutosh Aryal 1 • Jinfeng Chang 2,3,4 • Manolis Grillakis 5,6 • Naota Hanasaki 7 • Aristeidis Koutroulis 5 • Yadu Pokhrel 8 • Yusuke Satoh 3,7 • Sibyll Schaphoff 1 • Hannes Müller Schmied 9,10 • Tobias Stacke 11 • Qiuhong Tang 12 • Yoshihide Wada 3 • Kirsten Thonicke 1

Received: 15 January 2020 / Accepted: 12 October 2020 / Published online: 24 November 2020