

POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH

Modeling the impacts of climate change on fisheries and marine ecosystems

Heike Lotze, Tyler Eddy, Eric Galbraith, William Cheung, Derek Tittensor

BLUE PLANET Future of fish & fisheries? • Seafood supply? • Marine biodiversity? • Ecosystem functioning? => Observed vs modelled effects

Marine ecosystem models

GLOBAL

- 1. BOATS
- 2. Macroecological
- 3. DBEM
- 4. SS-DBEM
- 5. DBPM
- 6. APECOSM
- 7. POEM
- 8. EcoOcean
- 9. Madingley
- 10. SEAPODYM

REGIONAL (#regions)

- **1.** EwE (6 + 6)
- 2. Atlantis (1 + 2)
- 3. OSMOSE (1 + 3)
- 4. Size-structured (2)

5. End-to-End (1)

Goal

 \Rightarrow use same future climate scenarios as other ISI-MIP sectors

- 5 GCMs, 4 RCPs
- adapt to oceanic climate change scenarios
- \Rightarrow use same shared socioeconomic pathways (SSPs)
 - human population growth and GDP
 - adapt to future fishing scenarios

Challenges

- very varied marine ecosystem model structure, regional vs global
- very new, not yet completely refined
- very different purpose, design, input & output data
- GCMs limited 3D depth- & monthly-resolved physical & biogeochemical data
- coastal areas not well represented
- limited observational data for historical runs and model validation
- limited data on spatially resolved fishing effort and future scenarios

GCM selection

- GCM 1 = HadGEM2-ES (unreliable plankton data)
- GCM 2 = IPSL-CM5ALR 🗸
- GCM 3 = MIROC-ESM-CHEM (no size-resolved plankton groups)
- GCM 4 = GFDL-ESM2M \checkmark
- GCM 5 = NorESM1-M (no size-resolved plankton groups)
- [CESM1-BGC (RCPs 4.5 & 8.5 only)]
- RCPs 2.6, 4.5, 6.0, 8.5
- Ocean Acidification yes-no
- Fishing yes-no

First results

- Total system biomass (tsb)
- Total consumer biomass (tcb)
 with/without fishing
- Total catch (tc)
- Biomass of small and large consumers
 - with/without fishing
 - changes moving through the food web

Historical validation

No Fishing

boats, tcb, globe

BOATS, GFDL-reanalysis

1990

1995

1985

- Fishing stronger than climate effect

2000

2005

- Tracking extreme events

Fishing

No Fishing

BOATS GFDL-reanalysis size groups

Future projection BOATS, abundance – no fishing

Overview

RCP 2.6

RCP 8.5

	GFLD ESM2M	IPSL CM5A LR	GFLD ESM2M	IPSL CM5A LR	
	0.5°C	1.5°C	2.0°C	4.0°C	SST 2100
	1.3°C	1.8°C	3.0°C	4.7°C	GMT 2100
BOATS	-5%	-10%	-15%	-40%	tcb no fishing
MACRO	-3%	-10%	-12%	-32%	tcb no fishing
APECOSM		-3%		-13%	tcb no fishing
DBPM					tcb no fishing
BOATS	-55%	-25%	-60%	-40%	tcb fishing
DBEM	-3%	-8%	-8%	-34%	tcb fishing
SS-DBEM	5%		8%		tcb fishing
BOATS	-28%	-23%	-33%	-58%	catch
DBEM	-5%	-3%	-10%	-22%	catch
SS-DREM	2		2		catch

Regional changes

GFDL-ESM2M, RCP8.5

IPSL RCP 2.6

ipsl-cm5a-Ir fishing 1971-1979 mean tcb kg km-2

BOATS

ipsl-cm5a-Ir fishing 1990-1999 mean tcb kg km-2

0.00

ipsl-cm5a-Ir fishing 1971-1979 mean tcb kg km-2

IPSL RCP 8.5

ipsl-cm5a-Ir fishing 1990-1999 mean tcb kg km-2

ipsl-cm5a-Ir fishing 2090-2099 mean tcb kg km-2

Relative change

Total consumer biomass, 2070-2099 vs 2006-2035 GFDL-ESM2M, RCP8.5

Publications

• FISH-MIP

- Methods paper (Tittensor et al., submit soon)
- Case study New Zealand (Eddy et al., submit soon)
- Historical runs & validation (Eddy et al. in prep)
- Future runs (Lotze/Tittensor et al. in prep)
- Uncertainty analysis (Cheung et al. in prep)
- 2003 heat wave paper (Schewe et al. in prep)
- Extreme events (e.g. El Ninos)

Future plans

Simulations:

- Pre-industrial control runs
- Extended RCP 2.6 scenario to 2300
- Historical 1860-1950 fishing scenarios (hindcasting)
- Future fishing scenarios (based on SSPs)
- Ocean acidification (yes-no)

Cross-sectorial plans:

- Global food production & protein supply (*Agro-Economics sector*)
- Biodiversity changes on land & in the sea (*Biodiversity sector*)
- Land-use changes and nutrient run-off (Agriculture/Water sectors)

Management:

• New Lead Coordinator: Derek Tittensor