4 Water (hydrological models)

4.1 Scenarios

Climate & CO ₂ cond	entration scenarios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little)
	recycling of data has taken place.
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO_2 concentration from RCP2.6.
rcp60	Future climate and CO_2 concentration from RCP6.0.
rcp85	Future climate and CO ₂ concentration from RCP8.5.
Human influence a	nd land use
1860soc	Pre-industrial human influences. Given the small effect of dams & reservoirs before 1900, modellers may apply the 1901
	dam/reservoir configuration during the pre-industrial period and the 1861-1900 part of the historical period if that is significantly
	easier than applying the 1861 configuration. Please indicate in the metadata of the file and the model description on the ISIMIP
	website which option you used.
histsoc	Varying historical land use and other human influences.
2005soc	Fixed year-2005 land use and other human influences.
nosoc	No direct human influences on the water cycle. This is only for models that do not represent any water abstraction. Such model
	simulations should be labeled "nosoc" even if human land-use is represented.
rcp26soc	Varying water abstraction and land use according to SSP2 and RCP2.6; fixed year-2005 dams and reservoirs. For models using fixed LU
	types, varying irrigation areas can also be considered as varying land use.
rcp60soc	Varying water abstraction and land use according to SSP2 and RCP6.0, fixed year-2005 dams and reservoirs. For models using fixed LU
	types, varying irrigation areas can also be considered as varying land use.
2100rcp26soc	Human influences and land use fixed at year 2100 levels according to RCP2.6.

For the historical period, groups that have limited computational capacities may choose to report only part of the full period but including at least 1961-2005. All other periods should be reported completely.

For the purpose of the global water sector, "human influences" is defined as human interference directly with the hydrological fluxes of the water cycle for the purposes of any one or several of: water management (e.g. dams/reservoirs), irrigation, domestic water use, manufacturing and livestock production. I.e. human land use alone does not represent a human influence.

For those models that do not represent *changes* in human influences, those influences should be held fixed at 2005 levels throughout all Group 1 (cf. **2005soc** marked as dashed blue lines in **Figure 1**) and Group 2 simulations. Group 3 will be identical to Group 2 for these models and thus does not require additional

simulations. Models that do not include any human influences *at all* (as defined above) should nevertheless run the Group 1 and Group 2 simulation, since these simulations will still allow for an exploration of the effects of climate change compare to pre-industrial climate, and will also allow for a better assessment of the relative importance of human impacts versus climate impacts. These runs should be named as **nosoc** simulations (even if human land use is included).

The regional-scale simulations are performed for 12 large river basins. In six river basins (Tagus, Niger, Blue Nile, Ganges, Upper Yangtze and Darling) water management (dams/reservoirs, water abstraction) should be implemented. In the other six river basins, human influences such as LU changes, dams and reservoirs, and water abstraction is not relevant (Upper Yellow, Upper Amazon) or negligible (Rhine, Lena, Upper Mississippi), and can be ignored. Apart from this, regional water simulations should follow the global water simulations to allow for a cross-scale comparison of the simulations. The focus lakes for the local lake models are located within the focus river basins and listed in Section [2.8. We also provide bias-corrected meteorological forcing data for regional-scale simulations, see Section [2.1.

Table 9 ISIMIP2b scenarios for global and regional water simulations. *Option 2 only if option 1 not possible. Option 3 only if neither option 1 nor option 2 are possible.Simulations must follow a single row for each experiment; mixing of different options is not possible! **If you can only run simulations with 2005soc, then it is sufficient to provide only 200 years' worth of picontrol climate (1661-1860).

	Experiment	Input	pre-industrial 1661-1860	historical 1861-2005	future 2006-2099	extended future 2100-2299
	no climate change, pre-industrial CO_2	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
			Option 1: 1860soc	Option 1: histsoc	Option 1: 2005soc	Option 1: 2005soc
I	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Option 2*: 2005soc	Option 2*: 2005soc **	Option 2*: 2005soc **	Option 2*: 2005soc **
			Option 3*: nosoc	Option 3*: nosoc	Option 3*: nosoc	Option 3*: nosoc
	RCP2.6 climate & CO_2	Climate & CO ₂		historical	rcp26	rcp26
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Option 1: histsoc	Ontion 1/0* 2005	Option 1/2*: 2005soc
11				Option 2*: 2005soc	Option 1/2 : 2005soc	
				Option 3*: nosoc	Option 3*: nosoc	Option 3*: nosoc
	RCP6.0 climate & CO_2	Climate & CO ₂			rcp60	
III	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	Option 1/2*: 2005soc Option 3*: nosoc	not simulated

	no climate change, pre-industrial CO ₂	Climate & CO ₂			picontrol	picontrol
IV	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment I	rcp26soc	2100rcp26soc
V	no climate change, pre-industrial CO_2	Climate & CO ₂	Evporiment	Everiment I	picontrol	not cimulated
v	varying human influences & LU (RCP6.0)	Human & LU	Experiment	Experiment	rcp60soc	not simulated
VI	RCP2.6 climate & CO ₂	Climate & CO ₂			rcp26	rcp26
	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Experiment I	Experiment II	rcp26soc	2100rcp26soc
MI	RCP6.0 climate & CO ₂	Climate & CO ₂	- Even a vine and L		rcp60	not circulated
VII	varying human influences & LU (RCP6.0)	Human & LU	Experiment I	Experiment ii	rcp60soc	not simulated
	RCP8.5 climate & CO ₂	Climate & CO ₂			rcp85	
VIII	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	Option 1/2*: 2005soc Option 3*: nosoc	not simulated

4.1.1 Global and regional hydrological models

Variable names are chosen to comply, where feasible, with the ALMA convention (<u>www.lmd.jussieu.fr/~polcher/ALMA/convention_output_3.html</u>) and the names used in WATCH/WaterMIP. All variables are to be reported as time-averages with the indicated resolution; do not report instantaneous values ('snapshots'). Exceptions are **maxdis** and **mindis**, which are the maximum and minimum daily-average discharge in a given month, respectively, to be reported on a monthly basis (see below).

4.2 Output data

Table 10 Output variables to be reported by water sector models.Variables highlighted in orange are requested from both global and regional models;discharge at gaugelevel (highlighted in purple) is requested only from regional models; other (i.e., not shaded) variables are requested only from global models. Variables marked by * are alsorelevant for the permafrost sector and also listed there. Variables marked by ** are only relevant for the permafrost sector.

Variable (long name)	Variable name	Unit (NetCDF format)	Resolution	Comments
Hydrological Variables				

*Runoff	qtot	kg m-2 s-1	daily (0.5°x0.5°)	Total (surface + subsurface) runoff (qtot = qs + qsb).
Curfe ee wurdeff		ka ma 0 a 1	$m_{\rm exact b} = (0.58, 0.58)$	Mater that leaves the surface lever (ten esil lever) a s
Surface fution	qs	Kg 111-2 S-1		water that leaves the surface layer (top soil layer) e.g.
Culture of the second sector		Les us 0 s 1		as overland now / last runoin
Subsurface runoff	qsp	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of water that flows out from subsurface layer(s)
				including the groundwater layer (if present). Equals qg
Community of the second second				In case of a groundwater layer below only one soil layer
Groundwater recharge	qr	kg m-2 s-1	monthly (0.5°x0.5°)	water that percolates through the soil layer(s) into the
				groundwater layer. In case seepage is simulated but no
				groundwater layer is present, report seepage as dr and
				dg.
Groundwater recharge	qr	kg m-2 s-1	monthly (average for basin	Water that percolates through the soil layer(s) into the
			until gauge location)	groundwater layer. In case seepage is simulated but no
				groundwater layer is present, report seepage as dr and
				l dg.
Groundwater runoff	qg	kg m-2 s-1	monthly (0.5°x0.5°)	Water that leaves the groundwater layer. In case
				seepage is simulated but no groundwater layer is
				present, report seepage as dr and dg.
Discharge (gridded)	dis	m3 s-1	daily (0.5°x0.5°)	If daily resolution not possible, please provide monthly
Discharge (gauge level)	dis	m3 s-1	daily (see website for	If daily resolution not possible, please provide monthly
			gauge locations)	
Monthly maximum of daily	maxdis	m3 s-1	monthly (0.5°x0.5°)	Reporting this variable is not mandatory, but desirable
discharge				particularly if daily discharge data is unfeasible
Monthly minimum of daily	mindis	m3 s-1	monthly (0.5°x0.5°)	Reporting this variable is not mandatory, but desirable
discharge				particularly if daily discharge data is unfeasible
Evapotranspiration	evap	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of transpiration, evaporation, interception losses,
				and sublimation.
Evapotranspiration	evap	kg m-2 s-1	monthly (average for basin	Sum of transpiration, evaporation, interception losses,
			until gauge location)	and sublimation.
Potential Evapotranspiration	potevap	kg m-2 s-1	monthly (0.5°x0.5°)	As for <i>evap</i> , but with all resistances set to zero, except
				the aerodynamic resistance.
Potential Evapotranspiration	potevap	kg m-2 s-1	monthly (average for basin	As for evap, but with all resistances set to zero, except
			until gauge location)	the aerodynamic resistance.
*Soil moisture (= soil water	soilmoist	kg m-2	monthly (0.5°x0.5°)	Please provide soil moisture for all depth layers (i.e. 3D-
storage)				field), and indicate depth in m. If depth varies over time

				or space, see instructions for depth layers on <u>https://www.isimip.org/protocol/preparing-</u> <u>simulation-files</u> .
*Soil moisture (= soil water storage)	soilmoist	kg m-2	monthly (average for basin until gauge location)	Please provide soil moisture for all depth layers (i.e. 3D- field), and indicate depth in m. If depth varies over time or space, see instructions for depth layers on <u>https://www.isimip.org/protocol/preparing-</u> <u>simulation-files</u> .
Soil moisture, root zone	rootmoist	kg m-2	monthly (0.5°x0.5°)	Total simulated soil moisture available for evapotranspiration. If simulated by the model. Please indicate the depth of the root zone for each vegetation type in your model
**Frozen soil moisture for each layer	soilmoistfroz	kg m-2	monthly (0.5°x0.5°)	Water content of frozen soil
**Temperature of Soil	tsl	К	daily (0.5°x0.5°)	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea". Also need depths in meters. Daily would be great, but otherwise monthly would work. **if daily resolution not possible, please provide monthly
**Snow depth	snd	m	monthly (0.5°x0.5°)	Grid cell mean depth of snowpack.
*Snow water equivalent (= snow water storage)	swe	kg m-2	monthly (0.5°x0.5°)	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.
Total water storage	tws	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in all compartments. Please indicate in the NetCDF metadata which storage compartments are considered.
Canopy water storage	canopystor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in the canopy.
Glacier storage	glacierstor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in glaciers.
Groundwater storage	groundwstor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in groundwater layer.
Lake storage	lakestor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in lakes (except reservoirs).
Wetland storage	wetlandstor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in wetlands.
Reservoir storage	reservoirstor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in reservoirs.
River storage	riverstor	kg m-2	monthly (0.5°x0.5°)	Mean monthly water storage in rivers.

*Annual maximum daily thaw depth	thawdepth	m	annual (0.5°x0.5°)	Calculated from daily thaw depths, which do not need to be submitted themselves.
River temperature	triver	К	monthly (0.5°x0.5°)	Mean monthly water temperature in river (representative of the average temperature across the channel volume).
Rainfall	rainf	kg m-2 s-1	monthly (0.5°x0.5°)	These variables are required for test purposes only. If
Snowfall	snowf	kg m-2 s-1	monthly (0.5°x0.5°)	you need to reduce output data volumes, please provide these variables only once, with the first (test) data set you submit, e.g., for the first decade of each experiment. NOTE: rainf + snowf = total precipitation
Water management variables (for	models that consider v	vater management/hur	nan impacts)	
Irrigation water demand (=potential irrigation water Withdrawal)	pirrww	kg m-2 s-1	monthly (0.5°x0.5°)	Irrigation water withdrawal, assuming unlimited water supply
Actual irrigation water withdrawal	airrww	kg m-2 s-1	monthly (0.5°x0.5°)	Irrigation water withdrawal, taking water availability into account; please provide if computed
Potential irrigation water consumption	pirruse	kg m-2 s-1	monthly (0.5°x0.5°)	portion of withdrawal that is evapo-transpired, assuming unlimited water supply
Actual irrigation water consumption	airruse	kg m-2 s-1	monthly (0.5°x0.5°)	Portion of withdrawal that is evapotranspired, taking water availability into account, if computed
Actual green water consumption on irrigated cropland	airrusegreen	kg m-2 s-1	monthly (0.5°x0.5°)	Actual evapotranspiration from rain water over irrigated cropland; if computed
Potential green water consumption on irrigated cropland	pirrusegreen	kg m-2 s-1	monthly (0.5°x0.5°)	Potential evapotranspiration from rain water over irrigated cropland; if computed and different from airrusegreen
Actual green water consumption on rainfed cropland	arainfusegreen	kg m-2 s-1	monthly (0.5°x0.5°)	Actual evapotranspiration from rain water over rainfed cropland; if computed
Actual domestic water withdrawal	adomww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual domestic water consumption	adomuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual manufacturing water withdrawal	amanww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual manufacturing water consumption	amanuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed

Actual electricity water withdrawal	aelecww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual electricity water consumption	aelecuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual livestock water withdrawal	aliveww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual livestock water consumption	aliveuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Total (all sectors) actual water consumption	atotuse	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of actual water consumption from all sectors. Please indicate in metadata which sectors are included
Total (all sectors) actual water withdrawal	atotww	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of actual water withdrawal from all sectors. Please indicate in metadata which sectors are included
Total (all sectors) water demand (=potential water withdrawal)	ptotww	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of potential (i.e., assuming unlimited water supply) water withdrawal from all sectors. Please indicate in metadata which sectors are included
Total (all sectors) potential water consumption	ptotuse	kg m-2 s-1	monthly (0.5°x0.5°)	Sum of potential (i.e., assuming unlimited water supply) water consumption from all sectors. Please indicate in metadata which sectors are included
Other				
Potential manufacturing water consumption	pmanuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Potential manufacturing water withdrawal	pmanww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Potential domestic water consumption	pdomuse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Potential domestic water withdrawal	pdomww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual industrial wáter consumption	ainduse	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Actual industrial water withdrawal	aindww	kg m-2 s-1	monthly (0.5°x0.5°)	If computed
Static output				
Soil types	soil		static (0.5°x0.5°)	Soil types or texture classes as used by your model. Please include a description of each type or class, especially if these are different from the standard HSWD

				and GSWP3 soil types. Please also include a description of the parameters and values associated with these soil types (parameter values could be submitted as spatial fields where appropriate).
Leaf Area Index	lai	1	static (0.5°x0.5°) or monthly (0.5°x0.5°) where appropriate	If used by, or computed by the model
Agricultural variables (optior	nal output for all water mode	els that also simulate c	rop yields)	
Crop yields	yield- <crop>- <irrigation setting=""></irrigation></crop>	dry matter (t ha-1 per growing season)	per growing season (0.5°x0.5°)	Irrigation setting = "cirr" for "constraint irrigation" or "noirr" for rainfed
Actual planting dates	plantday- <crop>- <irrigation setting=""></irrigation></crop>	Day of year	per growing season (0.5°x0.5°)	Julian dates
Actual planting year	plantyear- <crop>- <irrigation setting=""></irrigation></crop>	Year of planting	per growing season (0.5°x0.5°)	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of planting that is also easy to follow for potential users from outside the project.
Anthesis dates	anthday- <crop>- <irrigation setting=""></irrigation></crop>	Day of year of anthesis	per growing season (0.5°x0.5°)	Attention: This has changed compared to the ISIMIP2a reporting where we asked for the "day from planting date". Together with the year of anthesis added to the list of outputs (see below) it allows for clear identification of anthesis that is also easy to follow for potential users from outside the project.
Year of anthesis	anthyear- <crop>- <irrigation setting=""></irrigation></crop>	year of anthesis	per growing season (0.5°x0.5°)	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of anthesis that is also easy to follow for potential users from outside the project.
Maturity dates	matyday- <crop>- <irrigation setting=""></irrigation></crop>	Day of year of maturity	per growing season (0.5°x0.5°)	Attention: This has changed compared to the ISIMIP2a reporting where we asked for the "day from planting date". Together with the year of maturity added to the list of outputs (see below) it allows for clear identification of maturity that is also easy to follow for potential users from outside the project.
Year of maturity	matyyear- <crop>- <irrigation setting=""></irrigation></crop>	year of maturity	per growing season (0.5°x0.5°)	Attention: This is an additional output compared to the ISIMIP2a reporting. It allows for clear identification of

				maturity that is also easy to follow for potential users from outside the project.
Nitrogen application rate	initr- <crop>- <irrigation setting=""></irrigation></crop>	kg ha-1 per growing season	per growing season (0.5°x0.5°)	Total nitrogen application rate. If organic and inorganic amendments are applied, rate should be reported as inorganic nitrogen equivalent (ignoring residues).
Biomass yields	biom- <crop>- <irrigation setting=""></irrigation></crop>	Dry matter (t ha-1 per growing season)	per growing season (0.5°x0.5°)	
Soil carbon emissions	sco2- <crop>- <irrigation setting=""></irrigation></crop>	kg C ha-1	per growing season (0.5°x0.5°)	Ideally should be modelled with realistic land-use history and initial carbon pools. Subject to extra study.
Nitrous oxide emissions	sn2o- <crop>- <irrigation setting=""></irrigation></crop>	kg N2O-N ha-1	per growing season (0.5°x0.5°)	Ideally should be modelled with realistic land-use history and initial carbon pools. Subject to extra study.
Nitrogen application rate	initr- <crop>- <irrigation setting=""></irrigation></crop>	kg ha-1 per growing season	per growing season (0.5°x0.5°)	Total nitrogen application rate. If organic and inorganic amendments are applied, rate should be reported as inorganic nitrogen equivalent (ignoring residues).

If storage issues keep you from reporting daily data, please contact the ISIMIP team to discuss potential solutions.

Comments related to the optional agricultural outputs

Simulations should be provided for the four major crops (wheat, maize, soy, and rice) but output for other crops and also bioenergy crops are highly welcome, too. See **Section 9.2** for more information on crop priority and naming list. For each crop, yields should be reported separately for irrigated land (cirr for "constraint irrigation") and rainfed conditions (noirr). This complements the full irrigation (firr) pure crop runs requested in the agriculture part of the protocol (Section 9). Yields simulations provided in the water sector should account for irrigation water constraints and have to be labelled by the "cirr" to highlight the difference.

The reporting of the crop yield-related outputs differs from the reporting of other variables in the water sector, as it is not done according to time but according to growing seasons to resolve potential multiple harvests. The unit of the time dimension of the NetCDF v4 output file is thus "growing seasons since YYYY-01-01 00:00:00". The first season in the file (with value time=1) is then the first complete growing season of the time period provided by the input data without any assumed spin-up data, which equates to the growing season with the first planting after this date. To ensure that data can be matched to individual years in post-processing, it is essential to also provide the actual planting dates (as day of the year), actual planting years (year), anthesis dates (as day of the year), year of anthesis (year), maturity dates (day of the year), and year of maturity (year). This procedure is identical to the GGCMI convention (Elliott et al. 2015: The Global Gridded Crop Model intercomparison: data and modelling protocols for Phase 1) and part of this agricultural protocol (Section 9).

Those models that cannot simulate time varying management/human impacts/fertilizer input should keep these fixed at year 2005 levels throughout the simulations ("2005soc" scenario in Group 1 (dashed line in **Figure 1**) and "2005soc" scenario in Group 2). They only need to run the first preindustrial period of Experiment I (1661-1860). Group 3 runs refer to models that are able to represent future changes in human management (varying crop varieties or fertilizer input). Assumptions about historical (Group 1) and future (Group 3) fertilizer inputs are harmonized and centrally provided within ISIMIP2b (Frieler et al., GMD, 2017).

15 References

Bolt, J. and van Zanden, J. L.: The Maddison Project: collaborative research on historical national accounts, Econ. Hist. Rev., 67(3), 627–651, 2014.

- Choulga, M., Kourzeneva, E., Zakharova, E. and Doganovsky, A.: Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling, Tellus A Dyn. Meteorol. Oceanogr., 66(1), 21295, doi:10.3402/tellusa.v66.21295, 2014.
- Dellink, R., Chateau, J., Lanzi, E. and Magné, B.: Long-term economic growth projections in the Shared Socioeconomic Pathways, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2015.06.004, 2015.¶
- Elliott, J. and Müller, C. and Deryng, D. and Chryssanthacopoulos, J. and Boote, K. J. and Büuchner, M. and Foster, I. and Glotter, M. and Heinke, J. and Iizumi, <u>T. and Izaurralde, R. C. and Mueller, N. D. and Ray, D. K. and Rosenzweig, C. and Ruane, A. C. and Sheffield, J.: The Global Gridded Crop Model</u> Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, 2015.
- Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 °C global warming simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321-4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
- Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014 Apr 23;14:55. doi: 10.1186/1471-2288-14-55. PMID: 24758509; PMCID: PMC4021419.¶
- Haith, D. A. and Shoemaker., L. L.: Generalized Watershed Loading Functions for stream flow nutrients, Water Resour. Bull., 23, 471–478, 1987.
- Håkanson, L. Models to predict Secchi depth in small glacial lakes. Aquatic Science 57, 31-53 (1995). https://doi.org/10.1007/BF00878025¶
- Hinkel, Jochen and Lincke, Daniel and Vafeidis, Athanasios T. and Perrette, Mahé and Nicholls, Robert James and Tol, Richard S. J. and Marzeion, Ben and Fettweis, Xavier and Ionescu, Cezar and Levermann, Anders: Coastal flood damage and adaptation costs under 21st century sea-level rise, Proceedings of the National Academy of Sciences, 111 (9): 3292-3297; DOI: 10.1073/pnas.1222469111, 2014.¶
- Hurtt, G. C., L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk, S. Fujimori, K. K. Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J. Jungclaus, Jed Kaplan, J. Kennedy, T. Kristzin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J. Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello, D. P. van Vuuren, X. Zhang (2020). Harmonization of Global Land-Use Change and Management for the Period 850-2100 (LUH2) for CMIP6.Geoscientifc Model Development Discussions. https://doi.org/10.5194/gmd-2019-360
- Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene HYDE 3.2, Earth Syst. Sci. Data, 9, 927-953, https://doi.org/10.5194/essd-9-927-2017, 2017. ¶
- Kopp, Robert E. and Horton, Radley M. and Little, Christopher M. and Mitrovica, Jerry X. and Oppenheimer, Michael and Rasmussen, D. J. and Strauss, Benjamin H. and Tebaldi, Claudia: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites, Earth's Future, 2 (8): 383-406, https://doi.org/10.1002/2014EF000239, 2014.¶

- Kopp, Robert E. and Kemp, Andrew C. and Bittermann, Klaus and Horton, Benjamin P. and Donnelly, Jeffrey P. and Gehrels, W. Roland and Hay, Carling C. and Mitrovica, Jerry X. and Morrow, Eric D. and Rahmstorf, Stefan: Temperature-driven global sea-level variability in the Common Era, Proceedings of the National Academy of Sciences, 113 (11): E1434--E1441, doi:10.1073/pnas.1517056113, 2016.¶
- Kourzeneva, E. 2009. Global dataset for the parameterization of lakes in numerical weather prediction and climate modelling. ALADIN Newsletter. 37, July December, (eds. F. Bouttier and C. Fischer), Meteo-France, Toulouse, France, 46_53.
- Kourzeneva, E.: External data for lake parameterization in Numerical Weather Prediction and climate modeling, Boreal Environ. Res., 15(2), 165–177, 2010.
- Lange, S.: Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset, Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, 2018.¶
- Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., Mackenzie, I. a., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D. and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes, Atmos. Chem. Phys., 13(16), 7997–8018, doi:10.5194/acp-13-7997-2013, 2013a.
- Lamarque, J. F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. a., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, a. and Zeng, G.: The atmospheric chemistry and climate model intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6(1), 179–206, doi:10.5194/gmd-6-179-2013, 2013b.
- De Lary, R.: Massif des Landes de Gascogne. II ETAT DES CONNAISSANCES TECHNIQUES, Bourdeaux., 2015.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296(1–4), 1–22, doi:10.1016/J.JHYDROL.2004.03.028, 2004.
- Millero FJ & Poisson A: International one-atmosphere equation of state of seawater. Deep-Sea Research, 28, 625–629, 1981.
- Monfreda, C., Ramankutty, N. and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Glob. Biogeochem. Cycles, 22(GB1022), doi:10.1029/2007GB002947., 2008.
- Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J. and Döll, P.: Impact of climate forcing uncertainty and human water use on global and continental water balance components, Proc. Int. Assoc. Hydrol. Sci., 93, doi:10.5194/piahs-93-1-2016, 2016.
- Murakami, D. and Yamagata, Y.: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling, [online] Available from: <u>http://arxiv.org/abs/1610.09041</u> (Accessed 29 May 2017), 2016.
- Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., Rolinski, S., Stevanovic, M. and Dietrich, J. P.: Land-use protection for climate change mitigation, Nat. Clim. Chang., 4(December), 2–5, doi:10.1038/nclimate2444, 2014.

- Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Collalti, A., Trotta, C., Matteucci, G., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J. A., Bohn, F., Steinkamp, J., Chikalanov, A., Weedon, G. P., Sheffield, J., Babst, F., Vega del Valle, I., Suckow, F., Martel, S., Mahnken, M., Gutsch, M., and Frieler, K.: The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests, Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, 2020. ¶
- Samir, C. and Lutz, W.: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2014.06.004, 2014.
- Schneiderman, E. M., Pierson, D. C., Lounsbury, D. G. and Zion, M. S.: Modeling the hydrochemistry of the Cannonsville watershed with Generalized Watershed Loading Functions (GWLF), J. Am. Water Resour. Assoc., 38, 1323–1347, 2002.

Shatwell (unpubl.)

- Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J. P., Müller, C., Bonsch, M., Schmitz, C., Bodirsky, B., Humpenöder, F. and Weindl, I.: High-end climate change impacts on agricultural welfare, Sci. Adv., 2016.
- Subin, Z. M., Riley, W. J. and Mironov, D.: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Syst., 4(1), M02001, doi:10.1029/2011MS000072, 2012.
- Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., Van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P. and Wiberg, D.: Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9(1), 175–222, doi:10.5194/gmd-9-175-2016, 2016.¶