6 Biomes

6.1 Scenarios

Since the pre-industrial simulations are an important part of the experiments, the spin-up has to finish before the pre-industrial simulations start. The spin-up should be using pre-industrial climate (**picontrol**) and year 1860 levels of "other human influences". For this reason, the pre-industrial climate data should be replicated as often as required. The precise implementation of the spin up will be model specific, the description of which will be part of the reporting process.

Climate & CO ₂ scena	rios
picontrol	Pre-industrial climate and 286ppm CO_2 concentration. The climate data for the entire period (1661-2299) are unique – no (or little)
	recycling of data has taken place.
historical	Historical climate and CO ₂ concentration.
rcp26	Future climate and CO_2 concentration from RCP2.6.
rcp60	Future climate and CO_2 concentration from RCP6.0.
rcp85	Future climate and CO_2 concentration from RCP8.5.
2005co2	CO2 concentration fixed at 2005 levels at 378.81ppm.
Human influence and	l land-use scenarios
1860soc	Constant pre-industrial (1860) land use, nitrogen deposition, and fertilizer input.
histsoc	Varying historical land use, nitrogen deposition and fertilizer input.
2005soc	Fixed year-2005 land use, nitrogen deposition and fertilizer input.
rcp26soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP2.6.
rcp60soc	Varying land use, water abstraction, nitrogen deposition and fertilizer input according to SSP2 and RCP6.0.
2100rcp26soc	Land use, nitrogen deposition and fertilizer input fixed at year 2100 levels according to RCP2.6 in 2100.

 Table 13 ISIMIP2b scenarios for the global biomes simulations.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
I	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	1860soc	histsoc	2005soc	2005soc
II	RCP2.6 climate & CO ₂	Climate &	Experiment I	historical	rcp26	rcp26

		CO ₂					
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU		histsoc	2005soc	2005soc	
	RCP2.6 climate, CO_2 after 2005 fixed at 2005 levels	Climate & CO ₂			rcp26, 2005co2	rcp26, 2005co2	
па	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I	Experiment II	2005soc	2005soc	
	RCP6.0 climate & CO_2	Climate & CO ₂	Functiment	Every sector	rcp60	not cimulated	
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment	Experiment in	2005soc	not simulated	
11/	no climate change, pre-industrial CO_2	Climate & CO ₂		Experiment I	picontrol	picontrol	
IV	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Experiment		rcp26soc	2100rcp26soc	
v	no climate change, pre-industrial CO ₂	Climate & CO ₂	Experiment I	Experiment I	picontrol	not simulated	
	varying human influences & LU (RCP6.0)	Human & LU			rcp60soc		
	RCP2.6 climate & CO ₂	Climate & CO ₂			rcp26	rcp26	
VI	varying human influences & LU up to 2100 (RCP2.6), then fixed at 2100 levels thereafter	Human & LU	Experiment	Experiment II	rcp26soc	2100rcp26soc	
VII	RCP6.0 climate & CO_2	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated	
	varying human influences & LU (RCP6.0)	Human & LU			rcp60soc		
	RCP8.5 climate & CO ₂	Climate & CO ₂	Functiment	Every sector	rcp85	not simulated	
VIII	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment i	Experiment II	2005soc		

 Table 14 Additional sector-specific simulations for the biome sector.

	Experiment	Input	Pre-industrial 1661-1860	Historical 1861-2005	Future 2006-2099	Extended future 2100-2299
la	no climate change, pre-industrial CO ₂	Climate & CO ₂	picontrol	picontrol	picontrol	picontrol
	LU & human influences fixed at 1860 levels	Human & LU	1860soc	1860soc	1860soc	1860soc
llb	RCP2.6 climate & CO_2	Climate & CO ₂	Experiment I	historical	rcp26	rcp26
	LU & human influences fixed at 1860 levels	Human & LU		1860soc	1860soc	1860soc
Illa	RCP6.0 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂	Fun avier and I	Experiment II	rcp60, 2005co2	not simulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	Experiment I		2005soc	
IIIb	RCP6.0 climate & CO_2	Climate & CO ₂	Experiment I	Experiment II	rcp60	not simulated
	LU & human influences fixed at 1860 levels	Human & LU	•		1860soc	
IIIc	RCP8.5 climate, CO ₂ after 2005 fixed at 2005 levels	Climate & CO ₂	- Fynarimant I		rcp85, 2005co2	not simulated
	varying LU & human influences up to 2005, then fixed at 2005 levels thereafter	Human & LU	схрепшент		2005soc	

6.2 Output data

Table 15 Variables to be reported by biomes models. Variables marked by * are also relevant for the permafrost sector and also listed in **Table 40**. **Note**: If you cannot provide the data at the temporal or spatial resolution specified, please provide it the highest possible resolution of your model.

Variable (long name)	Variable name	Unit (NetCDF_name)		Resolution	Comment
Essential outputs					
Pools					
*Carbon Mass in Vegetation biomass	cveg- <pft></pft>	kg m-2	per pft and	annual	Gridcell total cveg is essential. Per PFT
			gridcell total		information is desirable.
*Carbon Mass in aboveground	cvegag- <pft></pft>	kg m-2	per pft and	annual	Gridcell total cvegag is essential. Per PFT
vegetation biomass			gridcell total		information is desirable.

*Carbon Mass in belowground	cvegbg- <pft></pft>	kg m-2	per pft and	annual	Gridcell total cvegbg is essential. Per PFT
*Carbon Mass in Litter Pool	clitter	kg m-2	per gridcell total	annual	Info for each individual pool.
*Carbon Mass in Soil Pool	csoil	kg m-2	per gridcell total	annual	Info for each individual pool.
*Total Carbon Mass in Soil Pool	soilc	kg m-2	per gridcell total	annual	Integrated over the entire soil depth
Fluxes					
*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	gpp	kg m-2 s-1	gridcell total	daily (monthly)	
*Carbon Mass Flux out of atmosphere due to Gross Primary Production on Land	gpp- <pft></pft>	kg m-2 s-1	per pft	annual	
*Carbon Mass Flux into atmosphere due to Autotrophic (Plant) Respiration on Land	ra	kg m-2 s-1	gridcell total	daily (monthly)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	npp	kg m-2 s-1	gridcell total	daily (monthly)	
*Carbon Mass Flux out of atmosphere due to Net Primary Production on Land	npp- <pft></pft>	kg m-2 s-1	per pft	annual	
*Carbon Mass Flux into atmosphere due to Heterotrophic Respiration on Land	rh	kg m-2 s-1	gridcell total	daily (monthly)	
*Carbon Mass Flux into atmosphere due to total Carbon emissions from Fire	fireint	kg m-2 s-1	gridcell total	daily (monthly)	
*Carbon loss due to peat burning	somcfire	kg m-2 s-1	gridcell total	monthly	
*Carbon Mass Flux out of Atmosphere due to Net biome Production on Land (NBP)	ecoatmflux	kg m-2 s-1	gridcell total	daily (monthly)	This is the net mass flux of carbon between land and atmosphere calculated as photosynthesis MINUS the sum of plant and soil respiration, carbon fluxes from fire, harvest, grazing and land use change. Positive flux is into the land.
Structure					

*Leaf Area Index	lai- <pft></pft>	1	per pft	annual	
*Leaf Area Index	lai	1	gridcell average	daily (monthly)	
*Plant Functional Type Grid Fraction	pft- <pft></pft>	%	per gridcell	annual (or once if static)	The categories may differ from model to model, depending on their PFT definitions. This may include natural PFTs, anthropogenic PFTs, bare soil, lakes, urban areas, etc. Sum of all should equal the fraction of the grid-cell that is land. Value between 0 and 100.
Hydrological variables					
Total Evapo-Transpiration	evap	kg m-2 s-1	gridcell total	daily (monthly)	
Evaporation from Canopy (interception)	<mark>intercep<pft></pft></mark>	kg m-2 s-1	gridcell total	daily (monthly)	The canopy evaporation+sublimation (if present in model). Provide at pft-level if available in the model
Water Evaporation from Soil	esoil- <pft></pft>	kg m-2 s-1	per gridcell	daily (monthly)	Includes sublimation. Provide at pft-level if available in the model
Transpiration	trans- <pft></pft>	kg m-2 s-1	per gridcell	daily (monthly)	Provide at pft-level if available in the model
*Runoff	qtot	kg m-2 s-1	per gridcell	daily** (monthly)	Total (surface + subsurface) runoff (qtot = qs + qsb). ** Especially for models also participating in the water sector. If daily resolution not possible, please provide monthly. If storage issues keep you from reporting daily data, please contact the ISIMIP team to discuss potential solutions.
*Soil Moisture	soilmoist	kg m-2	per gridcell	daily (monthly)	If possible, please provide soil moisture for all depth layers (i.e., 3D-field), and indicate depth in m. Otherwise, provide soil moisture of entire column.
Surface Runoff	qs	kg m-2 s-1	per gridcell	daily (monthly)	Total surface runoff leaving the land portion of the grid cell.
*Frozen soil moisture for each layer	soilmoistfroz	kg m-2	per gridcell	monthly	Please provide soil moisture for all depth levels and indicate depth in m.

*Snow depth	snd	m	per gridcell	monthly	Grid cell mean depth of snowpack.	
*Snow water equivalent	swe	kg m-2	per gridcell	monthly	Total water mass of the snowpack (liquid or frozen), averaged over a grid cell.	
*Annual maximum thaw depth	thawdepth	m	per gridcell	annual	Calculated from daily thaw depths. Please provide for purposes of permafrost sector.	
Other outputs						
*Temperature of Soil	tsl	К	per gridcell	daily (monthly)	Temperature of each soil layer. Reported as "missing" for grid cells occupied entirely by "sea". Also needs depths in meters. Daily would be great, but otherwise monthly would work.	
Burnt Area Fraction	burntarea	%	per gridcell	daily (monthly)	Area percentage of grid cell that has burned at any time of the given day/month/year (for daily/monthly/annual resolution)	
Albedo	albedo	1	per gridcell	monthly	Average of pfts, snow cover, bare ground and water surfaces, range between 0-1	
*N ₂ O emissions into atmosphere	n2o	kg m-2 s-1	gridcell total	monthly	From land, not from industrial fossil fuel emissions and transport	
*CH4 emissions into atmosphere	ch4	kg m-2 s-1	gridcell total	monthly	From land, not from industrial fossil fuel emissions and transport	

15 References

Bolt, J. and van Zanden, J. L.: The Maddison Project: collaborative research on historical national accounts, Econ. Hist. Rev., 67(3), 627–651, 2014.

- Choulga, M., Kourzeneva, E., Zakharova, E. and Doganovsky, A.: Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling, Tellus A Dyn. Meteorol. Oceanogr., 66(1), 21295, doi:10.3402/tellusa.v66.21295, 2014.
- Dellink, R., Chateau, J., Lanzi, E. and Magné, B.: Long-term economic growth projections in the Shared Socioeconomic Pathways, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2015.06.004, 2015.¶
- Elliott, J. and Müller, C. and Deryng, D. and Chryssanthacopoulos, J. and Boote, K. J. and Büuchner, M. and Foster, I. and Glotter, M. and Heinke, J. and Iizumi, <u>T. and Izaurralde, R. C. and Mueller, N. D. and Ray, D. K. and Rosenzweig, C. and Ruane, A. C. and Sheffield, J.: The Global Gridded Crop Model</u> Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261–277, https://doi.org/10.5194/gmd-8-261-2015, 2015.
- Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 °C global warming simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321-4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
- Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014 Apr 23;14:55. doi: 10.1186/1471-2288-14-55. PMID: 24758509; PMCID: PMC4021419.¶
- Haith, D. A. and Shoemaker., L. L.: Generalized Watershed Loading Functions for stream flow nutrients, Water Resour. Bull., 23, 471–478, 1987.
- Håkanson, L. Models to predict Secchi depth in small glacial lakes. Aquatic Science 57, 31-53 (1995). https://doi.org/10.1007/BF00878025¶
- Hinkel, Jochen and Lincke, Daniel and Vafeidis, Athanasios T. and Perrette, Mahé and Nicholls, Robert James and Tol, Richard S. J. and Marzeion, Ben and Fettweis, Xavier and Ionescu, Cezar and Levermann, Anders: Coastal flood damage and adaptation costs under 21st century sea-level rise, Proceedings of the National Academy of Sciences, 111 (9): 3292-3297; DOI: 10.1073/pnas.1222469111, 2014.¶
- Hurtt, G. C., L. Chini, R. Sahajpal, S. Frolking, B. L. Bodirsky, K. Calvin, J. C. Doelman, J. Fisk, S. Fujimori, K. K. Goldewijk, T. Hasegawa, P. Havlik, A. Heinimann, F. Humpenöder, J. Jungclaus, Jed Kaplan, J. Kennedy, T. Kristzin, D. Lawrence, P. Lawrence, L. Ma, O. Mertz, J. Pongratz, A. Popp, B. Poulter, K. Riahi, E. Shevliakova, E. Stehfest, P. Thornton, F. N. Tubiello, D. P. van Vuuren, X. Zhang (2020). Harmonization of Global Land-Use Change and Management for the Period 850-2100 (LUH2) for CMIP6.Geoscientifc Model Development Discussions. https://doi.org/10.5194/gmd-2019-360
- Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene HYDE 3.2, Earth Syst. Sci. Data, 9, 927-953, https://doi.org/10.5194/essd-9-927-2017, 2017. ¶
- Kopp, Robert E. and Horton, Radley M. and Little, Christopher M. and Mitrovica, Jerry X. and Oppenheimer, Michael and Rasmussen, D. J. and Strauss, Benjamin H. and Tebaldi, Claudia: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites, Earth's Future, 2 (8): 383-406, https://doi.org/10.1002/2014EF000239, 2014.¶

- Kopp, Robert E. and Kemp, Andrew C. and Bittermann, Klaus and Horton, Benjamin P. and Donnelly, Jeffrey P. and Gehrels, W. Roland and Hay, Carling C. and Mitrovica, Jerry X. and Morrow, Eric D. and Rahmstorf, Stefan: Temperature-driven global sea-level variability in the Common Era, Proceedings of the National Academy of Sciences, 113 (11): E1434--E1441, doi:10.1073/pnas.1517056113, 2016.¶
- Kourzeneva, E. 2009. Global dataset for the parameterization of lakes in numerical weather prediction and climate modelling. ALADIN Newsletter. 37, July December, (eds. F. Bouttier and C. Fischer), Meteo-France, Toulouse, France, 46_53.
- Kourzeneva, E.: External data for lake parameterization in Numerical Weather Prediction and climate modeling, Boreal Environ. Res., 15(2), 165–177, 2010.
- Lange, S.: Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset, Earth Syst. Dynam., 9, 627–645, https://doi.org/10.5194/esd-9-627-2018, 2018.¶
- Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., Mackenzie, I. a., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D. and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes, Atmos. Chem. Phys., 13(16), 7997–8018, doi:10.5194/acp-13-7997-2013, 2013a.
- Lamarque, J. F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. a., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, a. and Zeng, G.: The atmospheric chemistry and climate model intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6(1), 179–206, doi:10.5194/gmd-6-179-2013, 2013b.
- De Lary, R.: Massif des Landes de Gascogne. II ETAT DES CONNAISSANCES TECHNIQUES, Bourdeaux., 2015.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296(1–4), 1–22, doi:10.1016/J.JHYDROL.2004.03.028, 2004.
- Millero FJ & Poisson A: International one-atmosphere equation of state of seawater. Deep-Sea Research, 28, 625–629, 1981.
- Monfreda, C., Ramankutty, N. and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Glob. Biogeochem. Cycles, 22(GB1022), doi:10.1029/2007GB002947., 2008.
- Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J. and Döll, P.: Impact of climate forcing uncertainty and human water use on global and continental water balance components, Proc. Int. Assoc. Hydrol. Sci., 93, doi:10.5194/piahs-93-1-2016, 2016.
- Murakami, D. and Yamagata, Y.: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling, [online] Available from: <u>http://arxiv.org/abs/1610.09041</u> (Accessed 29 May 2017), 2016.
- Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., Müller, C., Biewald, A., Rolinski, S., Stevanovic, M. and Dietrich, J. P.: Land-use protection for climate change mitigation, Nat. Clim. Chang., 4(December), 2–5, doi:10.1038/nclimate2444, 2014.

- Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Collalti, A., Trotta, C., Matteucci, G., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Horemans, J. A., Bohn, F., Steinkamp, J., Chikalanov, A., Weedon, G. P., Sheffield, J., Babst, F., Vega del Valle, I., Suckow, F., Martel, S., Mahnken, M., Gutsch, M., and Frieler, K.: The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests, Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, 2020. ¶
- Samir, C. and Lutz, W.: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2014.06.004, 2014.
- Schneiderman, E. M., Pierson, D. C., Lounsbury, D. G. and Zion, M. S.: Modeling the hydrochemistry of the Cannonsville watershed with Generalized Watershed Loading Functions (GWLF), J. Am. Water Resour. Assoc., 38, 1323–1347, 2002.

Shatwell (unpubl.)

- Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J. P., Müller, C., Bonsch, M., Schmitz, C., Bodirsky, B., Humpenöder, F. and Weindl, I.: High-end climate change impacts on agricultural welfare, Sci. Adv., 2016.
- Subin, Z. M., Riley, W. J. and Mironov, D.: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Syst., 4(1), M02001, doi:10.1029/2011MS000072, 2012.
- Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., Van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P. and Wiberg, D.: Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9(1), 175–222, doi:10.5194/gmd-9-175-2016, 2016.¶