ISIMIP sectoral report: biomes and regional forestry

Christopher Reyer, Potsdam Institute for Climate Impact Research

Leibniz Association

reyer@pik-potsdam.de ISIMIP workshop 22/24-06-2016, Potsdam

Goals ISI-MIP 2.1

Model evaluation/benchmarking:

→Are current vegetation models able to reproduce observed responses to climate variability and extreme events at global and regional scales?

Comparison of regional and global vegetation models for selected sites?

- multi-model climate change impact simulations
- cross-sectoral analyses (e.g. heatwave 2013 across sectors)
 do impacts on society add-up, multiply, cancel out?

Biomes: Status

ISI-MIP: Global vegetation models and available runs

Model	Princeton 1971-2012	GSWP3 1971-2010	WATCH 1971-2001	WFDEI 1971-2010	Country
CARAIB*	(X)	Х	Х	Х	BE
DLEM*	Х	Х	Х	Х	USA
JULES	Х	Х	Х		UK
Hybrid	(X)	(X)	(X)	(X)	UK
LPJ-GUESS*	Х	Х	Х	Х	GER
LPJmL	Х	Х	Х	Х	GER
ORCHIDEE	Х	Х	Х	Х	FR
VEGAS*	(X)	Х	Х	Х	USA
VISIT	Х	Х	Х	Х	JP
*now groups in ISL MID 2.1					

*new groups in ISI-MIP 2.1

ISI-MIP: Status of biome papers

- 1. Analysing the response of European ecosystems to droughts and heat waves within ISI-MIP2 simulations (Francois et al.) → presentation
- 2. Benchmarking of the ISI-MIP2 biome models (Chang et al.) → poster
- Evaluation of terrestrial primary productivity estimated by biome models:
 benchmark for historical change and implications for human appropriation (Ito et al.) → poster
- 4. Evaluation of the simulated distributions and characteristics of natural vegetation by the ISI-MIP2 biomes models (Friend et al.)
- 5. Terrestrial ecosystem response to climate conditions: A retrospective analysis (Rafique et al.) → poster
- 6. Global evaluation of vegetation carbon residence times as simulated by ISI-IMP2 Global Vegetation Models (GVMs) using a data product based on satellite and eddy covariance flux measurements (Rademacher et al.)
- 7. Evaluation of simulated short-term impacts on vegetation carbon and its sensitivity to climate and extreme events (Garcia Cantu Ros et al.)

Regional Forestry

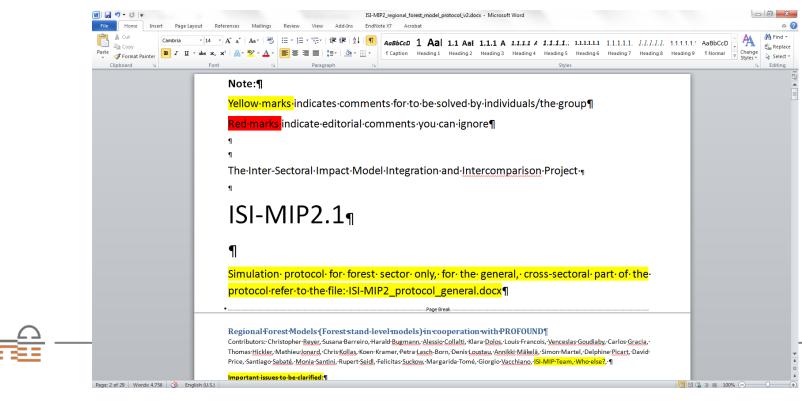
Data for initialising, driving and evaluating forest models

- reference dataset
- freely available and accessible
- input data for simulations as well as validation of forest models

Data for initialising, driving and evaluating forest models

Long time series from ICP Forest Level-2, NFI, Fluxnet/ICOS:

- Climate (observed, 4 ISI-MIP forcings)
- Soil
- Management
- Vegetation data (dbh, h, lai...)
- Fluxes
- Aata paper with "benchmarking dataset" for forest models


List of sites

	🖳 Site_ID	name1	name2	lat	lon	epsg	country	
1	3	BilyKriz	none	49.3	18.32	4326	Czech Republic	
2	4	Brasschaat	Brasschaat	51.3092	4.5205	4326	Belgium	
3	5	Collelongo	Collelongo	41.8494	13.5881	4326	Italy	
4	6	Espirra	Espirra	38.6394	-8.6018	4326	Portugal	
5	10	Hesse	Hesse	48.6742	7.0656	4326	Germany	
6	12	Hyytiala	Hyytiälä	61.8475	24.295	4326	Finland	
7	13	Kroof	KROOF	48.25	11.4	4326	Germany	
8	14	LeBray	Le Bray	44.71711	-0.7693	4326	France	
9	16	Peitz	Peitz (Eberswalde)	51.9166	14.35	4326	Germany	
10	18	Puechabon	Puéchabon	43.74139	3.595833	4326	France	
11	20	Solling_304	none	51.77	9.57	4326	Germany	
12	21	Soro	Sorø (DK-SOR)	55.485844	11.644616	4326	Denmark	

PROFOUND additions to protocol

- develop model protocols for multi-model simulations (climate change, ISI-MIP)
- develop advanced model protocols for more standardized model comparisons (parameter values, calibration techniques)
 with WG3

Forest models: Simulations

Experiment	Climate	Scenario	Management	Other Settings	#runs
1a) Historical, no disturbances	localclim, princeton, watch, gwsp3, watch+wfdei	-	man, nat	co2nodist	10
2a) Future, no disturbances	HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL- ESM2M, NorESM1-M	Rcp2.6, rcp4.5, rcp6.0, rcp8.5	man, nat	co2nodist noco2nodist	80
1b) Historical, disturbances	localclim, princeton, watch, gwsp3, watch+wfdei	-	man, nat	co2dist	10
2b) Future, disturbances	HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL- ESM2M, NorESM1-M	Rcp2.6, rcp4.5, rcp6.0, rcp8.5	man, nat	co2dist noco2dist	80

- → large numbers of runs
- → models quite different (complexity, scope)
- ➔ potentially 10-15 models contributing and 10 more available/interested
- → test runs available, simulations for 5-6 sites ongoing

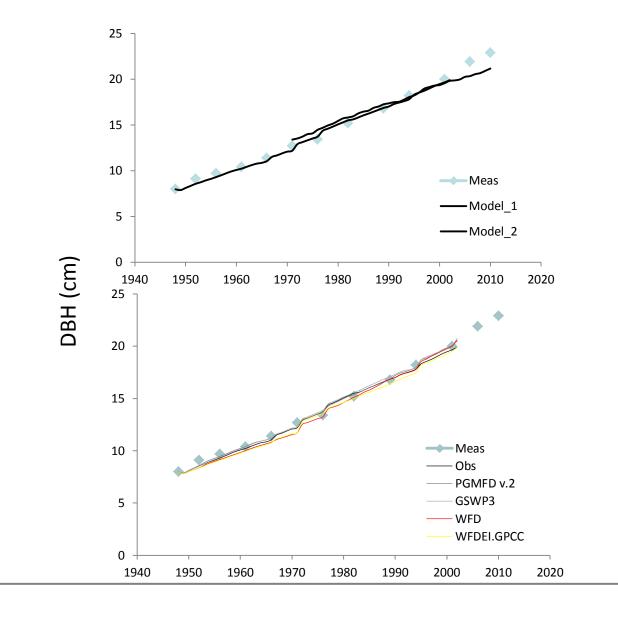
Regional Forestry Papers

- 1. Key results of the ISI-MIP2 / PROFOUND model comparison (Reyer et al.)
- 2. A genealogy of European dynamic forest models (Cailleret et al.)
- 3. Major sources of uncertainties in the projection of European forests under climate change (Cailleret et al.)
- 4. Multi-model intra- and inter-annual variability comparison in carbon fluxes and biomass anomalies (Collalti et al.)
- 5. Growth, productivity and water consumption of trees and forests stands with particular regard to extreme events (droughts) (Rötzer et al.)
- 6. Probabilistic Risk Assessment (Cameron et al.)
- 7. Multi-model comparison of climate change mitigation effects of forest management across Europe (Nadal-Sala et al.)
- 8. Cross-scale comparison of PROFOUND/ISI-MIP2 forestry model simulation (Steinkamp et al.)
- 9. Photosynthesis and allocation under Co2const and co2inc (Grote et al.)
- **10.** Climatic turning point (Dolos et al.)
- **11. Data paper** (Reyer/Dolos et al.)

Timeline

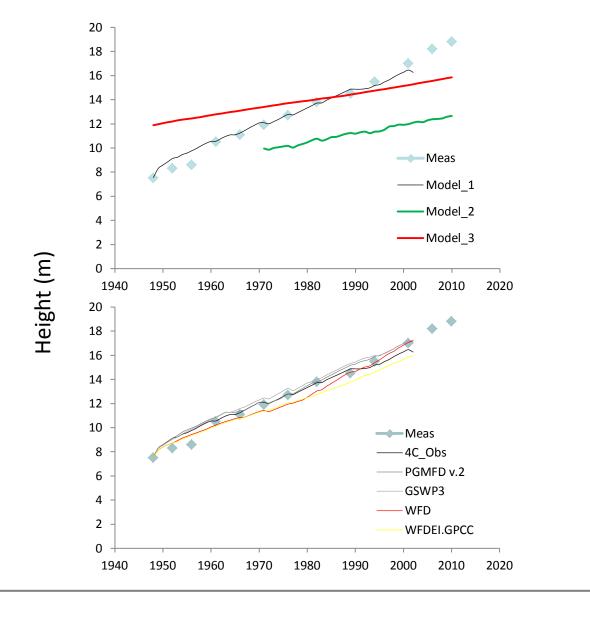
- First version of database officially released (summer/autumn 2016)
- Simulation Timeline:
 - Start simulating peitz and kroof (Experiments 1a and 2a)
 - In April simulate 3-4 additional stands.
 - Summer/autumn: simulate all remaining sites.
 - Submission deadline for simulations is 20th of July through the ISIMIP data upload procedure.
 - Present first results at PROFOUND main meeting in Krakow end of September

General information: reyer@pik-potsdam.de http://www.cost.eu/domains actions/fps/Actions/FP1304 http://cost-profound.eu/site/ http://www.isi-mip.org/ ISIMIP/PROFOUND Protocol: https://www.pik-potsdam.de/research/climate-impactsand-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/for-modellers/isi-mipphase-2/simulation-protocol Database: http://costprofound.eu/cloud/public.php?service=files&t=d2c71b8af6378dda6a80e5b706041b35 The R-Package (Github, preferred): https://github.com/COST-FP1304- PROFOUND/TG2/releases/tag/v0.1-alpha The R-Package (non-Github): http://costprofound.eu/cloud/public.php?service=files&t=4dfa24fc34bd19adabdd08fdef4803be



TG3 Status

- ISI-MIP/PROFOUND simulation protocol is ready!
- 3 modelling groups did test runs for first site (Peitz)
- Data available for more sites
- "Model Experiment Documentation" available



Preliminary Results

РІК

Preliminary Results

РІК

COST PROFOUND reimbursement

- Sign the attendance list!
- Reimbursement is 80€/night, 20€/meal
- You can only claim a maximum of 2 meals/meeting or travel day minus the meals provided by the organisers.
- Never finish the claim before you attended the meeting ("claim pending")

SIGN THE LIST!

7.3 Forest models (regional, stand-level)

PROFOUND Contributors: Christopher Reyer, Susana Barreiro, Harald Bugmann, Alessio Collalti, Klara Dolos, Louis Francois, Venceslas Goudiaby, Carlos Gracia, Thomas Hickler, Mathieu Jonard, Chris Kollas, Koen Kramer, Petra Lasch-Born, Denis Loustau, Annikki Mäkelä, Simon Martel, Daniel Nadal I Sala, Delphine Picart, David Price, Santiago Sabaté, Monia Santini, Rupert Seidl, Felicitas Suckow, Margarida Tomé, Giorgio Vacchiano

7.3 Forest models: Management & forest dynamics

- business-as-usual (BAU) management defined by data (e.g. stem numbers) and general management guidelines. Also for future runs.
- A "natural reference run (nat)" without any management has also been included in the experiments. The "nat"-run will help assessing the influence of forest management.

Species	Thinning regime	Intensity	Interval	Stand age for final harvest
		[% of remaining basal area]	[yr]	
pisy	below	20	15	140
piab	below	30	15	120
fasy	above	30	15	140
quro/qupe	above	15	15	200
рірі	below	20	10	45
<mark>eugl</mark>	<mark>below</mark>	<mark>30?</mark>	<mark>10</mark>	<mark>40?</mark>

7.3 Forest models: Management & forest dynamics

- running simulations until 2100 will result in very old forests.
- ➔ If you harvest, please proceed after harvest as your model usually does, e.g. plant the same tree species again or allow for regeneration of the same species.

7.3 Forest models: "Calibration"

- alterations to the model should be reported in the model experiment documentation → understanding of model results.
- model improvement driven by comparison to "PROFOUND TG2" data → avoid & report
- manual or automatic site-specific "tuning" of parameters should be avoided. The same "model" (i.e. also with the same parameter values) should be used in all simulations.
- model development needed to run a model at specific sites is welcomed (e.g. adjustment of phenology model to include chilling effects; fixing parameters for a new species). → document

7.3 Forest models: Disturbances

 If models simulate disturbances (bark beetle outbreaks or storm damage = "dist" runs) that can be switched on and off
 → experiments to tease out the influence of disturbances ("dist vs. nodist")

7.3 Forest models: Co2-effects

• increasing CO2 ("co2") and constant CO2 ("noco2") run

Database structure & interface

SQL Relational Database (SQLite) Physical data independence: no hierarchy -Main Tables Secondary tables built on top □A SQLite software / GUI -Browse Data **Export to other formats** Any language that supports SQL $\neg \mathbf{R}$ Python **Matlab**

