

Weather and Climate Risks

A risk model for everyone: making extreme weather impact models accessible to decision-maker

> Cross-sectoral ISIMIP and PROCLIAS Workshop 16-19 May 2022 Chahan Kropf

ETH zürich

Weather and Climate Risks

CLIMADA - an open-source and -access global probabilistic risk modelling and

adaptation economics platform

Cross-sectoral ISIMIP and PROCLIAS Workshop 16-19 May 2022 Chahan Kropf

Natural hazards

CLIMADA v3.1.2

Hazard

- Weather hazard events
 - Probability of event
 - ► Intensity at location

Hazard

- Probabilistic ensemble
 - Physical modelling
 - Historical data + statistical modelling

P = 1/2 Years

P = 1/10 Years

P = 1/12 Years

. . .

Exposures

- Exposure value at given place
 - Value at location

_		value	geometry	latitude	longitude	region_id	impf_
	0	183961.258736	POINT (8.54583 47.79583)	47.795833	8.545833	756	1
	1	209830.757151	POINT (8.55417 47.79583)	47.795833	8.554167	756	1
	2	176574.663650	POINT (8.56250 47.79583)	47.795833	8.562500	756	1
	3	125076.058282	POINT (8.57083 47.79583)	47.795833	8.570833	756	1
	4	56323.656151	POINT (8.57917 47.79583)	47.795833	8.579167	756	1

Exposures

- LitPop
 - Nightlight images
 - Population sensus data
 - ► GDP

Impact function

- Vulnerability i.e., impact function
 - How is value changed at given intensity

• E.g.: Damage to property value, power-generated from wind-turbine, surface of forest affected

Impact and risk in CLIMADA

- Risk is the combination of the probability [or likelihood] of a consequence and its magnitude
 - Risk = probability x impact
 - Weather hazard events

- Probability of event
- Intensity at location
- Exposure value at given place

- Value at location
- Vulnerability i.e., impact function

How is value changed at given intensity

- Impact = impf(intensity) * value
- Risk = probability * impf(intensity) * value

Core impact computation

- Exposures value at given location : E(x)
- Intensity of hazard event epsilon at modelled location $\hat{\mathcal{X}}$ closest to $\, x : \, h_\epsilon(ilde{x}) \,$
- Frequency (probability) of event : $\, {\cal V}_{\epsilon} \,$
- Impact function of exposures at location \mathcal{X} : $f(E(x)) = f_x$
- Impact matrix:

$$I_{\epsilon,x} = f_x(h_\epsilon(\tilde{x}))E(x)$$

Impact and risk metrics

• Impact at event

$$I_{\epsilon} = \sum_{x} I_{\epsilon,x}$$

• Expected average impact at exposures

$$\overline{I}_x = \sum_{\epsilon} I_{\epsilon,x} \nu_{\epsilon}$$

• Average impact over all exposures and all events (total annual expected risk)

$$\overline{R} = \sum_{\epsilon, x} I_{\epsilon, x} \cdot \nu_{\epsilon}$$

CLIMADA summary

- CLIMADA is a **framework** NOT a model.
- Scale all: Worldwide, Country, Region, City
- Extreme events (**probabilistic** or single events)
- Now or Near-future casting (e.g., risk warnings), **Current and future risk** (e.g. Socio-economic development + Climate change), Adaptation option
- **Exposures**: People, Ecosystems, Assets, Economic supply chains, Critical infrastructure, ...
- Hazards: Tropical cyclones, Winter storms, Wildfires, Flood, Drought, Heatwaves
- **API**: data obtainable directly Worldwide consistent at 4x4km
- Open-source and open-access **Python platform**.
- **Uncertainty**: uncertainty and sensitivity analysis
- Various output metrics (e.g. return period curves, risk transfer, average impact, ...)
- **Applications**: Risk assessment, adaptation option appraisal, story lines ,...
- Support for **decision**-making

Economics of Climate Adaptation

More than twenty adaptation case studies worldwide¹: Many hazards, economic sectors and risk cultures

Florida: Hurricane risk to public and private assets

US Gulf Coast: Hurricane risk to the energy system

New York: Cyclones and surge risk to a metropolis

Hull. UK: Flood and storm risk to urban property

→ http://www.wcr.ethz.ch/research/casestudies.html

China: Drought risk to agriculture

Bangladesh: Flood risk to a fast-developina city

ROCKEFELLER

FOUNDATION

Caribbean: Hurricane risk to small islands

El Salvador: Flood and landslide risk to vulnerable people

Guvana: Flash flood risk to a developing urban area

Mali: Risk of climate zone shift to agriculture

Tanzania: Drought risk to health and power generation

Samoa: Risk of sea level rise to a small island state

¹ ECA working group, supported by CCRIF/WorldBank, see: http://www.wcr.ethz.ch/research/casestudies.html

Many users and partners (logo style & size arbitrary, non-exhaustive)

Up-coming talks

- Case study
- Uncertainty
- Forecasting
- WildFire
- Heat-mortality
- Multi-hazard

Selected CLIMADA publications

- Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, 12, 3085–3097, <u>https://doi.org/10.5194/gmd-12-3085-2019</u>, 2019.
- Bresch, D. N. and Aznar-Siguan, G.: CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool, 14, 351–363, <u>https://doi.org/10.5194/gmd-14-351-2021</u>, 2021.
- Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, 12, 817–833, <u>https://doi.org/10.5194/essd-12-817-2020</u>, 2020.
- Eberenz, S., Lüthi, S., and Bresch, D. N.: Regional tropical cyclone impact functions for globally consistent risk assessments, 21, 393–415, <u>https://doi.org/10.5194/nhess-21-393-2021</u>, 2021.
- Kropf, C. M., Ciullo, A., Otth, L., Meiler, S., Rana, A., Schmid, E., McCaughey, J. W., and Bresch, D. N.: Uncertainty and sensitivity analysis for probabilistic weather and climate risk modelling: an implementation in CLIMADA v.3.1., 2022.
- Lüthi, S., Aznar-Siguan, G., Fairless, C., and Bresch, D. N.: Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2, 14, 7175–7187, <u>https://doi.org/10.5194/gmd-14-7175-2021</u>, 2021.
- Kropf, C. M., Ciullo, A., Otth, L., Meiler, S., Rana, A., Schmid, E., McCaughey, J. W., and Bresch, D. N.: Uncertainty and sensitivity analysis for probabilistic weather and climate risk modelling: an implementation in CLIMADA v.3.1.0, 1–32, <u>https://doi.org/10.5194/gmd-2021-437</u>, 2022.

Thank you!