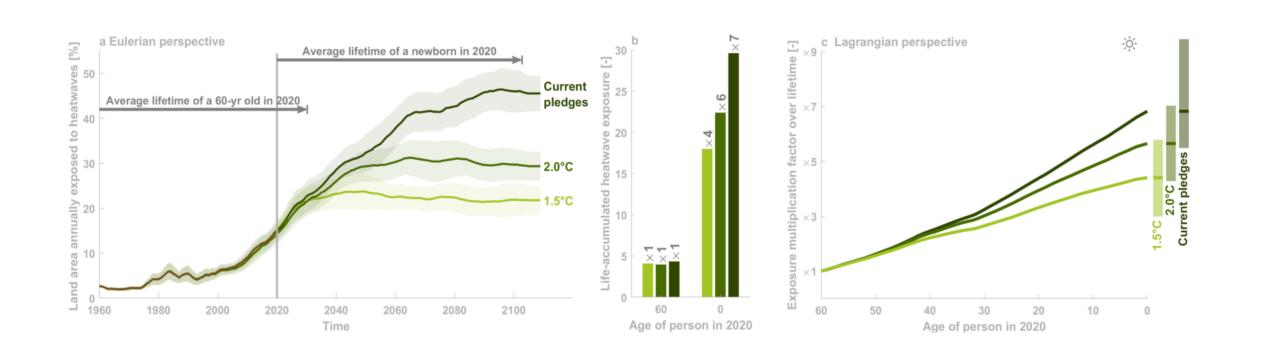
# Quantifying lifetime water scarcity with ISIMIP 3b

**Inne Vanderkelen<sup>1</sup>**, Y. Wada<sup>2</sup>, J. Keune<sup>3</sup>, D. G. Miralles<sup>3</sup>, W. Thiery<sup>1</sup>

<sup>1</sup> Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel; <sup>2</sup> International Institute for Applied Systems Analysis; <sup>3</sup> Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

**Contact**: inne.vanderkelen@vub.be






**Research Foundation** 

# The idea

How much water does a person need during his life and to what extent will this demand be met?

### 2 Lifetime exposure explained



How does this differ for a newborn compared to a 60-year-old?

How much does this differ across the world?

Integration of **blue water scarcity** during a person's lifetime

Application of lifetime exposure framework of Thiery et al. (2021):

- Global-scale analysis •
- Exposure (frequency), but also intensity, duration and hotspots •
- Both climate change and socio-economic drivers (SSP and RCPs) •
- Based on ISIMIP3b simulations

Fig. 1 Global land area annually exposed to heatwaves under three scenarios (a). Lifetime heatwave exposure for the 1960 and 2020 birth cohorts under the three scenarios (b). Multiplication factors for lifetime heatwave exposure across birth cohorts relative to the 1960 cohort. Adapted from Thiery et al. 2021

ā. 3

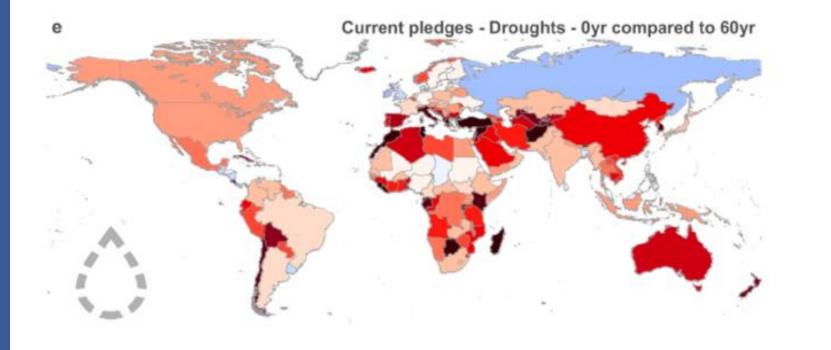



Fig. 2 Country-scale exposure multiplication factors for droughts under current pledges. The multiplication factors aggregate within-country variability in population density and land fraction affected by extreme events. Adapted form Thiery et al., 2021

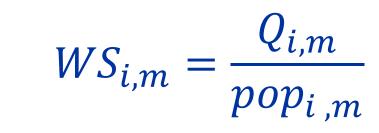


Droughts

### 3 Water scarcity indices

### **Data requirements** 4

# **Falkenmark index**


water shortage

*Liu et al., 2017* 

Per capita water availability

Simulations required from the ISIMIP 3b global water sector:

- monthly timescales
- picontrol, historical and SSP1-2.6, SSP3-7.0 and SSP5-8.5

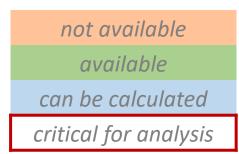


- WS <sub>i.m</sub> Per capita water availability (m<sup>3</sup>/cap month)
- Q<sub>i,m</sub> Total water availability in cell i, month m (m<sup>3</sup>/month) •
- pop <sub>i.m</sub> Number of people in cell i, and corr. year (#/month)

Absolute water scarcity:  $WS_{i,m} < 500 \text{ m}^3/\text{cap year}$ 

# **Criticality ratio** water stress

According to Veldkamp et al., 2017


WSI<sub>*i*,*m*</sub> =  $\frac{WW_{i,m}}{O_{i,m} - EF_{i,m}}$ 

- WSI<sub>i.m</sub> Water Scarcity Index in cell i, month m •
- WW<sub>i,m</sub> Total Water Withdrawal in cell i, month m (m<sup>3</sup>/month) •
- Total water availability in cell i, month m (m<sup>3</sup>/month) Q<sub>i,m</sub> •
- EF<sub>i.m</sub> Environmental flow requirement (m<sup>3</sup>/month) •

Water scarcity threshold:  $WSI_{i,m} > 1$ 

- total runoff, actual total water use, potential total water withdrawal
- sectoral water withdrawals, if possible

## Table 1. Variables and GHMs available within ISIMIP3b on 9/05/2022



|          | CWatM | H08 | WaterGAP2-2e |                                                |
|----------|-------|-----|--------------|------------------------------------------------|
| qtot     |       |     |              | Total (surface + subsurface) runoff            |
| adomuse  |       |     |              | Actual Domestic Water Consumption              |
| aelecuse |       |     |              | Actual Electricity Water Consumption           |
| ainduse  |       |     |              | Actual Industrial Water Consumption            |
| aliveuse |       |     |              | Actual livestock Water Consumption             |
| amanuse  |       |     |              | Actual Manufacturing Water Consumption         |
| atotuse  |       |     |              | Total Actual Water Consumption (all sectors)   |
| pdomww   |       |     |              | Potential Domestic Water Withdrawal            |
| pelecww  |       |     |              | Potential electricity Water Withdrawal         |
| pindww   |       |     |              | Potential Industrial Water Withdrawal          |
| pirrww   |       |     |              | Potential Irrigation Water Withdrawal          |
| pliveww  |       |     |              | Potential livestock Water Withdrawal           |
| pmanww   |       |     |              | Potential Manufacturing Water Withdrawal       |
| ptotww   |       |     |              | Total Potential Water Withdrawal (all sectors) |

Grid cell water availability accounts for water from upstream, correted with upstream water use:

 $Q_{i,m} = qtot_{i,m} + \Sigma(qtot_{upstream,i,m} - atotuse_{upstream,i,m})$ 

# **Open questions**

- Water footprints to account for local versus non-local demand and availability?
- Account for age-dependent water requirements during lifetime?
- Adaptation to water scarcity? Framing to how much adaptation is needed

### References 6

Liu, J., Yang, H., Gosling, S. N., ..., Oki, T. (2017). Water scarcity assessments in the past, present, and future. *Earth's Future*, 5(6), 545–559. Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2). Thiery, W., Lange, S., Rogelj, J., ... Wada, Y. (2021). Intergenerational inequities in exposure to climate extremes. Science, 374(6564), 158–160. Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H., ... Ward, P. J. (2017). Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 8, 15697.

5