

CLEAN, AFFORDABLE, SECURE ENERGY

PRESERVING AND RESTORING ECOSYSTEMS & BIODIVERSITY

FROM FARM TO FORK

EU AS A GLOBAL LEADER

CLIMATE ACTION

SUSTAINABLE & SMART MOBILITY

INDUSTRY FOR A GREEN & CIRCULAR ECONOMY

FINANCING & JUST TRANSITION

MAKING HOMES ENERGY EFFICIENT

Policy context

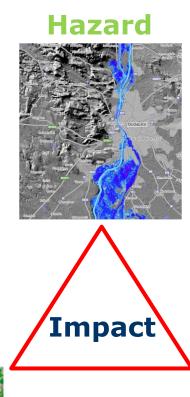
2019 The European Green Deal

2021 New EU Strategy on Adaptation

Specific policy support needs (climate resilience)

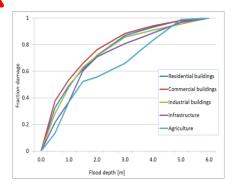
- Climate risk assessment:
 - EU-wide climate risk assessment (summer 2024)
 - Financial sector (ECB, EBA): asset-level assessment
- Adaptation assessment
 - EU Mission on Adaptation: regional and local focus
- Downscaling of impacts, equity aspects (e.g. social groups)

JRC PESETA IV project


Bottom-up/process model approach

Climate change variables:

Temperature change


Precipitation change

• •

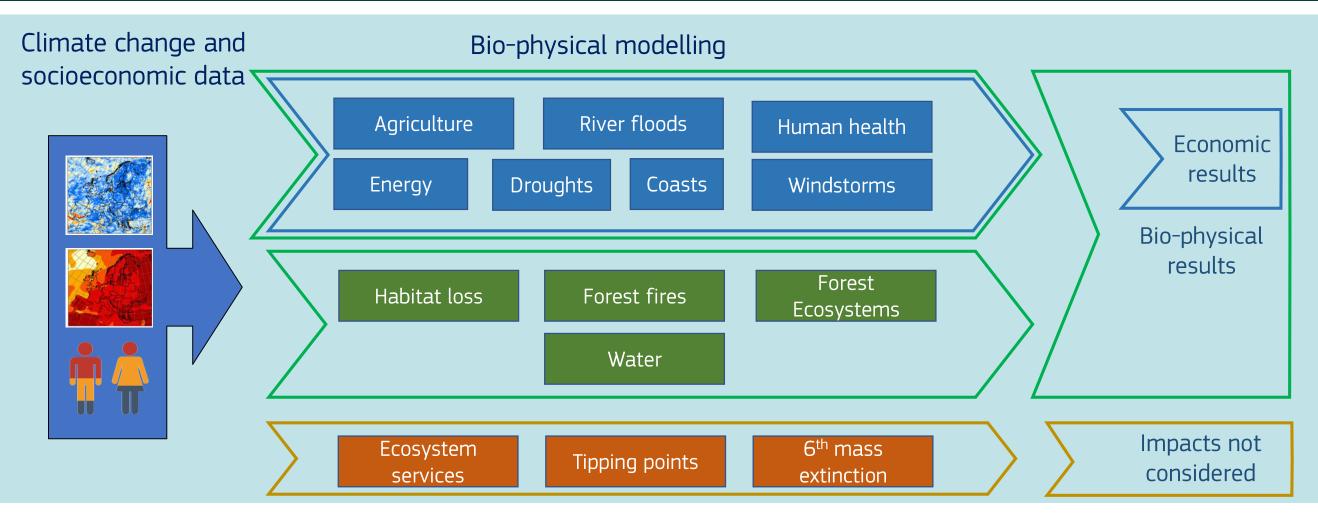
Exposure

Vulnerability

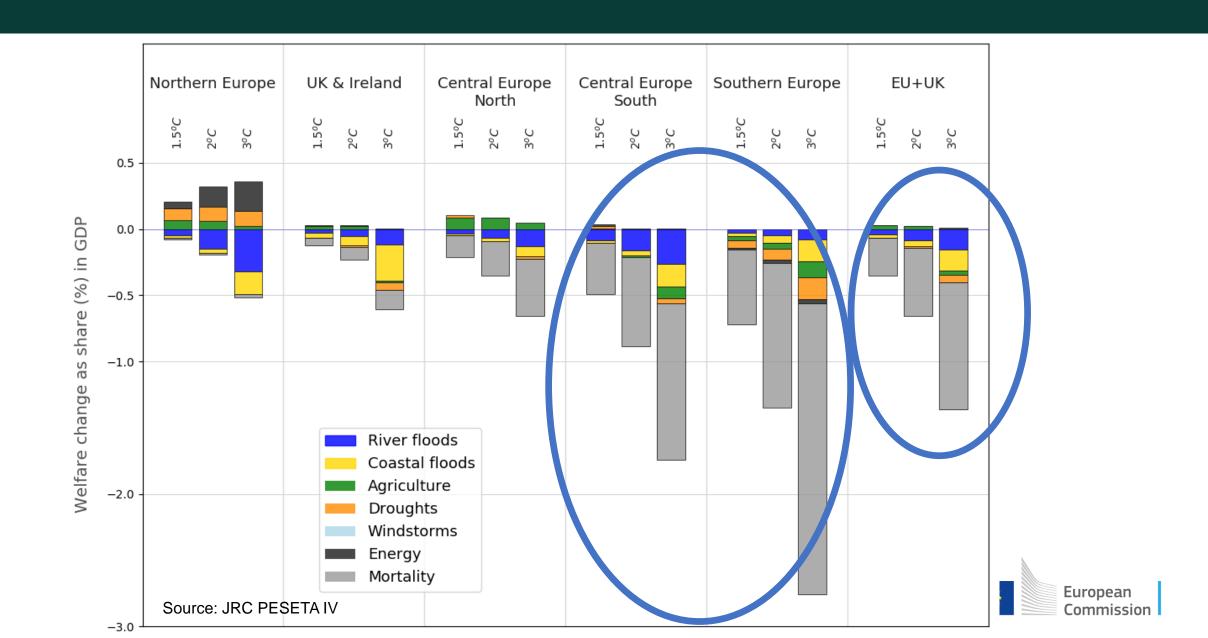
Climate impacts, e.g.:

Yield losses

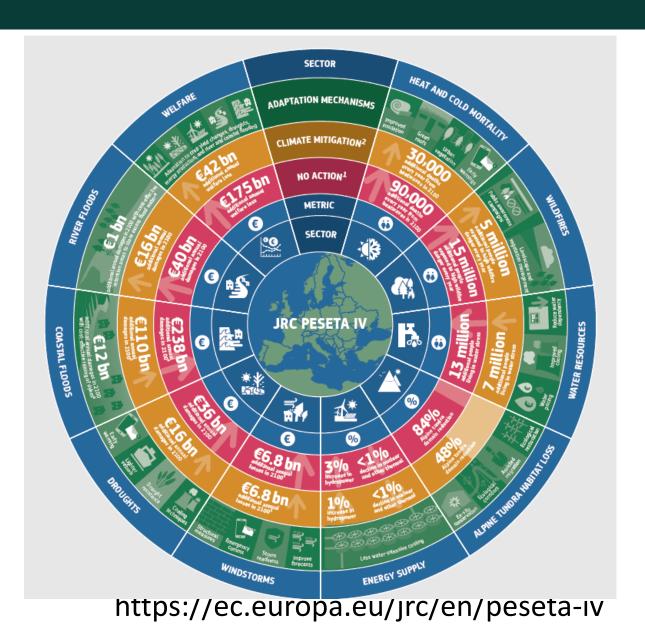
Economic losses


...

PESETA climate impact categories



JRC PESETA IV project stages



Distribution of Welfare damages, with mortality

Dissemination

- Technical reports
- Scientific reports

- Infographics
- Summary cards
- Video

Dissemination

LETTERS

https://doi.org/10.1038/s41558-018-0260-4

nature climate change

Climatic and socioeconomic controls of future coastal flood risk in Europe

Michalis I. Vousdoukas 61.2*, Lorenzo Mentaschi 61, Evangelos Voukouvalas 63, Alessandra Bianchi4, Francesco Dottori o and Luc Feyen

Environmental Research Letters

LETTER

Assessing future climate change impacts in the EU and the USA: insights and lessons from two continental-scale projects*

Juan-Carlos Ciscar¹, James Rising², Robert E Kopp³ and Luc Feyen⁴

- ¹ Joint Research Centre, European Commission, Spain
- 2 The Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, United
- Institute of Earth, Ocean, and Atmospheric Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, United States of America
- Joint Research Centre, European Commission, Italy

Earth's Future

RESEARCH ARTICLE

10.1029/2019EF001170

Key Points:

- · Unique concurrent spring and summer climatic anomalies affected Europe in 2018
- · 2018-like droughts could become a common occurrence as early as 2043
- Climate change adaptation strategies for agriculture in Europe cannot count on recurrent water seesaws

Supporting Information:

Supporting Information S1

The Exceptional 2018 European Water Seesaw Calls for **Action on Adaptation**

Andrea Toreti¹, Alan Belward¹, Ignacio Perez-Dominguez², Gustavo Naumann¹, Jürg Luterbacher³, Ottmar Cronie⁴, Lorenzo Seguini¹, Giacinto Manfron¹, Raul Lopez-Lozano¹, Bettina Baruth¹, Maurits van den Berg¹, Frank Dentener¹, Andrej Ceglar¹, Thomas Chatzopoulos², and Matteo Zampieri¹

¹European Commission, Joint Research Centre (JRC), Ispra, Italy, ²European Commission, Joint Research Centre (JRC), Seville, Spain, 3Department of Geography, Climatology, Climate Dynamics and Climate Change, Centre for International Development and Environmental Research, Justus-Liebig University of Giessen, Giessen, Germany,

Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

NO-ACTION **SCENARIO**

Global warming is driving sea-level rise and intensifies coastal storms, resulting in more frequent flooding. If no action is taken, coastal flood impacts will be severe.

year 2100 HIGH EMISSIONS

SEA LEVEL +85 cm [47 cm - 198 cm]

2.2 million PEOPLE EXPOSED per year

239 billion **ECONOMIC LOSSES**

130 Gt

of CO,eq

emissions*

552 thousand per year

PEOPLE EXPOSED

25 Gt

of CO.eq

emissions*

12 billion € **ECONOMIC LOSSES** peryear

SEA LEVEL +51 cm [21 cm - 84 cm]

MITIGATION AND

ADAPTATION SCENARIO

Mitigation means limiting sea level rise

by reducing emissions. Adaptation includes all measures to protect coastal

communities through nature-based and engineered physical measures.

NOW

170-fold increase in economic losses 22-fold increase in exposed population

1.4 billion € **ECONOMIC LOSSES** per year in present

100 thousand PEOPLE EXPOSED per year in present

Raising flood defenses will cost up to 2 billion € per year

95% reduction of economic losses 73% fewer people exposed

100, eg is a matric incepture used to compare the emissions from various great house guess on the basis of their global-warn any potential by confidence incepture and the same global warning potential identition from Surostati.

year 2100

NOW

WITH MITIGATION

Alpine tundra in Europe in a changing climate

Present

Scandes

Pyrenees

98%

of Europe's alpine tundra domain is in the Pyrenees, the Alps and the Scandes.

Future

The treeline is projected to move vertically upwards by up to 8m every year in a 3 °C warming scenario.

Tundra area loss

Global temperature increase

Region	1.5 ℃	2 °C	3 °C
Alps	-36%	-50%	-75%
Scandes	-50%	-61%	-87%
Pyrenees	-74%	-91%	-99%

The domain is projected to shrink by

84%

across Europe in a 3 °C warming scenario.

The projected changes affect vital ecosystem services, such as the provision and regulation of freshwater from melting snow. They also diminish valuable habitats, biodiversity, and recreational uses such as skiing.

Limitations

- Uncertainty
- Coverage of climate impacts
- Spatial downscaling (regional, local, asset)
- Costly running of bottom-up models
- Multi-hazard covariates; integration
- Outreach and communication

New, on-going developments

Europe

- Uncertainty: Include 4C warming level; focus on range of impacts (stochastic approach)
- Coverage: new categories of climate impacts
 - Labour productivity, Transport infrastructure
 - Revisit extreme temperature impacts (city-level)
 - Tourism, Energy demand
 - Air pollution
 - Pandemic risk
- Downscaling: Regional perspective (DG REGIO)
- Costly running: Statistical emulators (similar to the EPA FrEDI approach)
- Communication

Global: coast, river floods, droughts

Integration of impacts (inspired by CIRA categories)

Agriculture	Energy	Built environment
Crop productivity	Cooling and heating demand	Damage from river flooding
Damages from drought	Solar, wind, hydro	Damage from coastal flooding
Damages from river flooding	Nuclear, thermal	Damage from drought subsidence
Damages from coastal flooding	Losses from drought	Damage from windstorms
		Exposure critical infrastructures
		Exposure cultural heritage

Transport	Ecosystems	People
Heat impacts rail&road	Mediterranean and Alpine	Exposure (floods, fire, T, air,)
River flood impacts infrastructure	Shift eco-domains?	Mortality (T, air, storms?, flood?)
Coastal flood impacts infrastructure	Fires	Labor productivity
Navigation impacts drought	Windthrow	
	Insect outbreaks	
	Sandy beaches (erosion)	

Thank you!

JRC PESETA IV Team

L Feyen, JC Ciscar, S Gosling, D Ibarreta, A Soria, A Dosio, G Naumann, S Russo, G Formetta, G Forzieri, M Girardello, J Spinoni, L Mentaschi, B Bisselink, J Bernhard, E Gelati, M Adamovic, S Guenther, A de Roo, C Cammalleri, F Dottori, A Bianchi, L Alfieri, M Vousdoukas, I Mongelli, J Hinkel, P Ward, H Costa, D de Rigo, G Libertà, T Houston Durrant, J San-Miguel-Ayanz, JI Barredo, A Mauri, G Caudullo, G Ceccherini, P Beck, A Cescatti, J Hristov, A Toreti, I Pérez Domínguez, F Dentener, T Fellmann, C Elleby, A Ceglar, D Fumagalli, S Niemeyer, I Cerrani, L Panarello, M Bratu, J Després, W Szewczyk, A Matei, E Mulholland, M Olariaga

