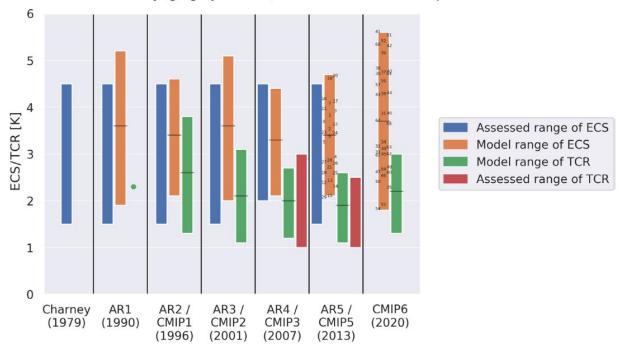

Too Hot To Be True?

'Hot model' issue in CMIP6 climate projections

Climate Sensitivity

Equilibrium Climate Sensitivity (ECS):

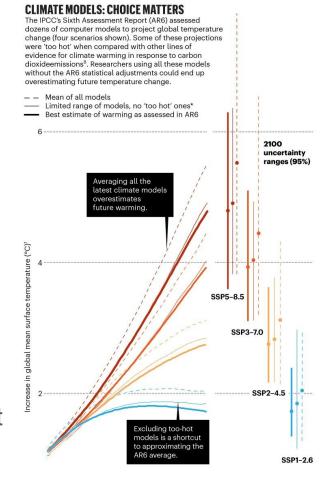
Long-term temperature response to doubled CO₂ concentration relative to pre-industrial level


Transient Climate Response (TCR):

Amount of global warming in the

Amount of global warming in the year in which CO_2 concentration has doubled after having steadily increased by 1% per year starting at pre-industrial level

CMIP6 has some very sensitive models

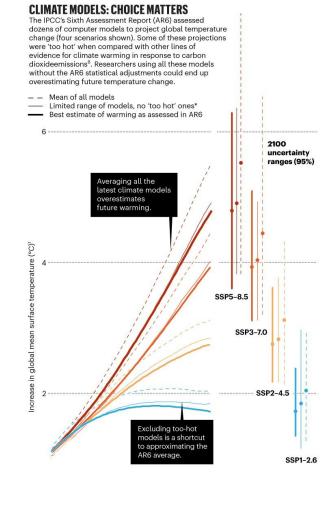

Equilibrium climate sensitivity (gregory method) and transient climate response

Meehl et al. (2020, https://doi.org/10.1126/sciadv.aba1981)

Hausfather et al. (2022) commentary

- Novum in AR6: WG1 no longer considers temperature projections from different CMIP6 models as equally plausible
- Based on evidence from palaeoclimate, observations of surface temperatures and ocean heat content, and models of physical processes
- AR6 WG1 presents 'assessed' warming estimates
- In particular 'hot models' assessed as likely too hot
- Hausfather et al. (2022) say climate impact assessments should follow suit

Exaggerated climate impacts?


- CMIP6 models warm faster than CMIP5 models
 - => climate impacts emerge earlier in impact simulations based on CMIP6
 - => larger impacts in 2100 compared to simulations based on CMIP5
- Example from ISIMIP3b (2 out of 5 ISIMIP3b GCMs are 'hot models'):

Climate impacts on global agriculture emerge earlier in new generation of climate and crop models

Discussion points

- Are the 'hot models' really too hot?
- What to do about it in ISIMIP?
- Hausfather et al. (2022) suggest to
 (i) base analyses on global warming levels
 (ii) screen out models with a TCR outside the
 AR6 assessed 'likely range' (40% of all models)
- Experts: Colin Jones, Richard Betts, Chris Jones (all Met Office), Olivier Boucher (IPSL),
 Roland Séférian (CNRM)

