Future Water: Hotspots, Brightspots and Blind spots

Proclias/ISIMIP webinar

Prof Carolien Kroeze, Wageningen University, The Netherlands

Take home messages

- Worldwide, clean water availability is at stake
- In the future, this may be worse
- Hotspots most pollution from a few sources targeted policies
- Brightspots optimistic scenarios show that clean water availability can be secured worldwide, but may be a challenge in Africa
- Blindspots we need to avoid tradeoffs and pollution swapping
- Need for multi-pollutant, multi-impact approach

SUSTAINABLE G ALS

Future Water Challenges

Too much Too little Too dirty

Too much (flooding) – Germany

Germany, July 2021. Photo: Stadt Erftstadt

Too much (flooding) – Pakistan

AND MARKED IN 7

Pakistan July 2022

Where flood risk is projected to rise fastest in the US

A new analysis projects changes in flood risk between 2020 and 2050 by zooming in on every neighborhood across the U.S. The map shows county-level data on the average annual loss due to flood damage.

Flood damage measured in 2020 U.S. dollars. Map: The Conversation/CC-BY-ND • Source: Wing, et al. 2022 • Get the data • Download image

Too little (droughts) – Europe

Europe faces a future of extreme droughts

Mitigation and adaptation measures are going to be crucial for future farming on the continent

A parched section of the Wayoh Reservoir in August 2018. Photograph: Paul Ellis/AFP/Getty Images

- Summer 2018
- 80% less rainfall across central Europe

Future Water Challenges

Too much Too little Too dirty

Too dirty: Nitrogen and Phosphorus (Nutrients)

Too dirty – Dutch Texel Reserve

GENERAL

Water in the Dutch Texel nature reserve suddenly turns pink again after five years

By taketonews
O JUN 24, 2022 Dutch, nature, pink, reserve, suddenly, Texel, turns, water, years

June 2022

Severe drought on the Wadden Island. As a result, the salt content in the water is high and the oxygen content is low." (https://taketonews.com/)

Too dirty: Pharmaceuticals

This lake was once a thriving waterbody, it now receives pharmaceutical waste flowing in through open nallahs. Photo: Shailendra Yashwant

Too dirty: Pathogens

Children fetch water as the cows also take from the same point in Amudat district (PHOTO/File).

Too dirty: Plastic

Future Water – The need for clean water

- Drinking water
- Irrigation water
- Industrial water
- Water for nature

23

Future Water – Demand for water is increasing

Based on data of Gleick et al. (2003) Science

Future Water – Climate change impacts on streamflow

van Vliet et al (2016), nature cc

Future: More water stress worldwide

Increasing water demand

Changing water availability

Increasing water pollution

Water security at risk for 80% of the world population

CJ Vörösmarty et al. Nature 467, 555-561 (2010) doi:10.1038/nature09440

Future Water - Pollution

- Hotspots of pollution
- Bright spots of transitions in society
- Blind spots in environmental policy

Future Water

Hotspots of pollution

- Bright spots of transitions in society
- Blind spots in environmental policy

Hotspots of pollution

- 80% of water pollution from 20% of the sources
 - Hotspots: urbanization and food production
- Water pollution hotspots overlap for many pollutants
- Opportunity for focused pollution control
- In the future: more and more an urban problem
 - over two-thirds of the world population is urban in 2050

Hotspots of river pollution by N, P and a pathogen from livestock in 2010 (MARINA model)

Li et al., (2022)

Hotspots of river pollution by N, P and a pathogen from livestock in 2010 (MARINA model)

Li et al., (2022)

Hotspots of river pollution by N, P and a pathogen from livestock in 2010 (MARINA model)

Non-hotspotsHotspots
associated with
one pollutantHotspots
associated with
two pollutantsHotspots
associated with
three pollutants

Li et al., (2022)

Hotspots of water pollution from cities in 2050 (MARINA model)

Strokal et al. (2021)

Hotspots of water pollution from cities in 2050 (MARINA model)

Future water pollution (N, P, pathogen) from cities 2010-2050 Business-as-Usual scenario

Future hotspots of nitrogen- related water scarcity 2010-2050 (Wang et al. unpublished)

Future Water

- Hotspots of pollution
- Bright spots of transitions in society
- Blind spots in environmental policy

What challenges are for optimistic futures with clean water?

- www.menti.com
- **7513 1476**

Future Water

- Hotspots of pollution
- Bright spots of transitions in society
- Blind spots in environmental policy

Future hotspots of nitrogen- related water scarcity 2010-2050 (Wang et al. unpublished)

Future hotspots of nitrogen- related water scarcity 2010-2050 (Wang et al. unpublished)

Future water pollution (N, P, pathogen) from cities 2010-2050

Strokal et al. (2021)

Future water pollution (N, P, pathogen) from cities 2010-2050

- Promising examples of transition in society
- However, not enough to reach SDG6 (clean water for all) worldwide
- Optimistic futures
- Backcasting
 - what future do we want, and how do we get there?

Backcasting: how to reach environmental targets? (Li et al. 2019)

Backcasting: how to reach environmental targets

48

Long term targets call for short term actions

Optimistic versus Optimal Solutions

Optimistic

• Maximum feasible pollution control

Optimal

- Minimizing tradeoffs, costs
- Fair allocation of the burden

Li et al. (2019)

Optimal allocation of pollution rights (Li et al. 2019)

Future Water

- Hotspots of pollution
- Bright spots of transitions in society
- Blind spots in environmental policy
 - Trade-offs and pollution swapping

Blind spot – Effects of climate change on water pollution

"Climate change alone may increase river export of nutrients considerably: we calculate 24% higher river export of nitrogen and 16% higher phosphorus for a scenario assuming severe climate change compared to the same scenario with low climate change."

Earth's Future

RESEARCH ARTICLE 10.1029/2019EF001280

Key Points:

- In 2050, rivers in China may be more polluted or cleaner, depending on socio-economic and climatic changes
- Climate change may increase nutrient pollution in rivers and coastal eutrophication in China
- Coastal eutrophication can be reduced by nutrient management and climate mitigation

Global Change Can Make Coastal Eutrophication Control in China More Difficult

Mengru Wang^{1,2} ⁽ⁱ⁾, Carolien Kroeze², Maryna Strokal², Michelle T. H. van Vliet^{2,3}, and Lin Ma¹ ⁽ⁱ⁾

¹Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China, ²Water Systems and Global Change Group, Wageningen University and Research, Wageningen, Netherlands, ³Department of Physical Geography, Utrecht University, Utrecht, Netherlands

Blind spot – Effects of COVID-19 control on the environment?

- Worldwide
 - More use of plastic (masks, protection materials)
 - More use of soap (hand washing)
 - More use of pain killers

Implications for water quality?

Blind spot – COVID-19 control resulted in more water pollution (plastic, soap, pain killers)

SUSTAINABLE G ALS

https://doi.org/10.1038/s41467-022-28351-3

OPEN

Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China

Mengru Wang ^{1,2}[⊠], Annette B. G. Janssen ⁰², Jeanne Bazin², Maryna Strokal ⁰², Lin Ma⁰ ^{1⊠} & Carolien Kroeze²

Check for updates

319 interactions between Sustainable Development Goals for water sustainability

- 286 synergies (e.g., water climate food)
- **33 trade-offs** (e.g., water urbanization)

A new science agenda

- Multiple sources
- Multiple pollutants
- Multiple impacts

Need for creative, inclusive and bright solutions

We need a multi-pollutant approach

- Common sources
- Diverse interactions
- Diverse impacts

Strokal et al., (2021)

MARINA: Model to Assess River Inputs of pollutaNts to seAs (Strokal et al. 2021)

- Multiple pollutants
- Climate-water-landsociety interactions
- Pollution sources
- Effective solutions

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Water-Systems-and-Global-Change-Group/Research-1/Water-Quality/The-MARINA-models.htm

Take home messages

- Worldwide, clean water availability is at stake
- In the future, this may be worse
- Hotspots most pollution from a few sources targeted policies
- Brightspots optimistic scenarios show that clean water availability can be secured worldwide, but may be a challenge in Africa
- Blindspots we need to avoid tradeoffs and pollution swapping
- Need for multi-pollutant, multi-impact approach

Challenges for optimistic futures

- Grand challenges (climate, biodiversity, water, food)
- Need for transitions in society
- Natural and social sciences
- Involvement of society
- From mono- to multi- to inter- to transdisciplinarity
- Beyond Earth & Environmental Science

Thank you for your attention

