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Motivation
Empirically derived damage functions are typically estimated exploiting:
• idiosyncratic weather variation 
• cross-sectional climatic exposure

The estimation of the impacts on the economy is hindered by:
• the temporal invariance of climate 
• correlation of cross-sectional climate variation with other regional heterogeneity

Strong assumptions about dynamic processes:
• adaptation (adjusting among a set of technological opportunities, technological change)
• general equilibrium effects (adjustment of prices and factor reallocations) 
• intensification of climate effects

In this work we test the hypothesis that we can observe meaningful climatic variation within 
units in the econometric framework. 



Climate (c): 10-year moving average of 
the yearly observed weather (w). 

Weather anomaly (a): deviation of 
observed yearly w from c.

Theoretical framework: weather exposure 
decompositon
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i and t index units and time; 
w: weather variable; c: climate variable; a: weather anomaly variable; 

z: spatially varying predictive variable;
μ: fixed effects 

Theoretical framework: equations
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Preliminary data analysis: ERA5 country-
year data

We test the hypothesis that we cannot observe meaningful climatic variation within the 
unit of the sample. 

The blue (orange) line shows the trend in the de-meaned value of Cooling Degree Days 
(24°C) for each country in the original weather observation (climate moving average).

The two metrics have a similar distribution, suggesting meaningful statistical 
information can be extracted from within-country climatic variations.



• Electricity and fossil fuel demand is estimated 
separately for each combination of sector m 
(Residential, Commerical, Industrial, Agricolture 
and Trasport). 

• Climatic  CDDs/HDDs and the vector of positive 
and negative anomalies are included in the 
same equation.

• The vector of anomalies is interacted with the 
level of climatic CDDs/HDDs: e.g. a positive 
anomaly in CDDs (eg +100 CDDs) influences 
energy demand differently in cold vs hot 
climates.

Dependent 
variable

Sectoral demand for 
electricity and fossil 

fuels
Scope Global
Units Countries (~135)
Time 1970-2019

N ~5.000-7.000
 

Weather/clima
te

Cooling Degree Days 
and Heating Degree 

Days

Comparable 
studies

Rode et al., (2021); De 
Cian and Sue Wing 

(2019).

Empirical setting

• Fixed effects by units and time control for time-invariant and time-specific unobservables.
• Regional non-linear time trends control for long-term development pathways in the outcome.
• The preferred specification is estimated in levels. Equations in first-differences are also tested.



Electricity demand response to CDDs by sector

Results: energy demand

Boxplot: value across climates

T: Transport; 
A: 
Agricolture; 
C: 
Commerical; 
R: 
Residential; 
I: Industrial



Total energy demand respose by cold/hot exposure and fuel

Results: energy demand



Projections: energy demand
Country-level changes in energy demand in 2050 under RCP 4.5 across 13 GCMs (median) with 
respect to 2010-2014:
• Global change in electricity demand for adpatation in the preferred model is 2-3 times higher 

than classical models.
• Impacts result from climatic shifts, while impacts of future weather anomalies are not accounted 

for (preliminary).

Global energy demand change in 2050

RCP Weath
er

Hybri
d

Decomposi
tion

Electricit
y

4.5 14% 20% 37%
8.5 21% 42% 56%

Fossil 
fuels

4.5 3% ~0% 4%
8.5 5% 2% 7%



Discussion

Implications: 
• Energy demand is an archetype of a broader class of impacts of climate change
• Assumption that we cannot extract a climatic signal from the historical record can be relaxed 

in other settings

Caveats:
• Limited representation of sub-annual impacts (e.g. peak demand)
• Energy efficiency and fuels/technology substitution only considered implicitly 

Future work:
• Interaction effects that can account for adaptive capacity (eg: capital stock accumulation)
• Method for projections of future anomalies (possibly exploiting GCM inter-annual variability)
• Include shocks in IAMs to evaluate impacts on energy supply and emissions.



Inclusion of the energy-adaptation loop in the WITCH model

Next step: update of the adaptation-energy 
feedbacks

New calibration data will allow to:
• Include larger combination of 

sectors-fuels-regions
• Focus on larger set of climate 

indicators
• Compare impacts to other 

modeling approaches (coupling 
building model to IAMs)
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Preliminary data analysis



Additional results: US counties’ per capita 
income

 The weather model over-estimates the marginal damage from additional warming relative to the 
hybrid (heterogeneous marginal effect) model.

 However, the hybrid model estimates how long-run adaptation affects the response to temporary 
hot exposure, while our decomposition shows how a shock due to permanent hot exposure differs 
from one due to temporary hot exposure.
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Potential update of novel empirical evidence into existing models

Models considered: 
IAMS: WITCH, REMIND, TIMER-IMAGE, COFFE-TEA, MESSAGEix, FUND, GCAM, AIM-Hub, DNE21+, E3ME-FTT, EPPACGE; 
GCE: ENVISAGE, GEM-E3, ICES
PE-Energy: TIMES, POLES, PROMETHEUS

Future directions in modeling energy for 
adaptation



Regression model of each quantile of 
the positive/negative anomalies, 
dependent on historical CDDs, 
conditional on the climate zone:

• The plot shows the predicted levels 
(95th confidence interval very 
narrow).

• Only Climates A (Tropical) and B 
(Arid) are characterized by hot 
historical annual CDDs >2000. 

• Nevertheless, the relationship is 
predicted for each climate zone for 
the full range (0-3500) CDDs, in 
order to make sure any possible 
combination of future CDDs by 
climate zone is assigned to its 
synthetic pair

sStatistical emulator of future CDD anomalies



Electricity demand: weather specification 



Electricity demand: decomposition specification 



Electricity demand: quadratic decomposition specification 



Empirical results: climate vs anomalies

Impact for positive 
anomalies ranging 

from 10 to 500 
CDDs


