IS CLIMATE CHANGE DRIVING AN INCREASE IN GLOBAL FIRES?

Chantelle Burton & Seppe Lampe

D. I. Kelley, W. Thiery, S. Hantson, N. Christidis, L. Gudmundsson, M. Forrest, E. Burke, J. Chang, H. Huang, A. Ito, S. Kou-Giesbrecht, W. Li, L. Nieradzik, F. Li, Y. Chen, J. Randerson, G. Lasslop & C. P. O. Reyer

Burned Area

Burned Area

Burned Area

Burned Area

Burned Area

Burned Area

Burned Area Anomaly

Burned Area – Burned Area

AR6 IPCC Regions

Burned Area Relative Anomaly

- 1. What has already changed because of CC?
- 2. How fast are things changing currently?

- 1. What has already changed because of CC? Change in BA distribution
- 2. How are these changes (currently) evolving? Recent trends in relative anomaly difference

Steps

- 1. Regional evaluation of fire models
- 2. Regionally weighted ensemble
- 3. Analysis

Evaluation

Evaluation

NME part of FireMIP default benchmarking

Monthly ranked NME for distribution Annual unranked NME for trend

Turn NMEs into one weight per model per region

Region							NWN
Model	CLASSIC	JULES	LPJ- GUESS- SIMFIRE- BLAZE	lpj- guess- spitfire	ORCHIDEE- MICT- SPITFIRE	SSiB4	VISIT
weights	0.121909	0.164952	0.16245	0.216085	0.113882	0.166913	0.053809
GFED5	NME3_ranked	0.75842	0.609744	0.617835 0	.509879 0.1	779205 0.73021	8 1.455793
	NME3_annua	I 1.646342	1.279412	1.31332 0	.981308 1.3	772612 0.92545	9 1.368974

 $NME = \frac{\sum A_i |obs_i - sim_i|}{\sum A_i |obs_i - \overline{obs}|},$ Kelley et al., 2013; Hantson et al., 2020

$$w_i = \frac{e^{-\frac{D_i}{\sigma_D}}}{1 + \sum_{j \neq i}^M e^{-\frac{S_{ij}}{\sigma_S}}},$$

VISIT

Results

 $\frac{Factual_{21year} - Counterfactual_{21year}}{Counter f actual_{21year}}$

Main conclusions

1. What has already changed because of CC?

Global = 17.5% more burned area Highest Region (CAU) = 110% more burned area

2. How fast are things changing currently?

Global Trend = 0.5% per year Highest Trend (CAU) = 2.5% per year

