EFFECT OF FOREST MANAGEMENT CHOICES ON CARBON SEQUESTRATION AND BIOD VERSITY AT NATIONAL SCALE - A SIMULATION STUDY

Annikki Mäkelä Francesco Minunno, Virpi Junttila, Ismael Lozano, Martin Forsius

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Maatalous-metsätieteellinen tiedekunta

PROCLIAS & ISIMIP Prague

- Need to safeguard biodiversity and carbon sequestration in forests
- Is it possible to do this through multipurpose forest management or do we need to increase protected area?
- What kind of forest management is required?
- Implications from Global -> EU -> country?

Consortium funded by the Strategic Research Council of the Academy of Finland 2018-2024

To study, using large-scale model simulations

How do different management strategies affect national-scale wood production, forest carbon storage and sink, and biodiversity, if

- 1. MANAGEMENT-DRIVEN (MD): All forests are managed following a given strategy?
- 2. DEMAND-DRIVEN (DD): As above, but total harvest is constrained by external demand of roundwood and energywood?
- 3. EXTENDED PROTECTION (E): As above, but set-aside (protected area) is increased?

Accepted for Ambio special issue on IBC-Carbon results

PREBAS: GROWTH AND C BALANCE AT STAND LEVEL

- Intermediate complexity process-based model
- Runs with NFI type forest data & daily weather data
- VALENTINE & MÄKELÄ 2005 TREE PHYS
- PELTONIEMI ET AL. 2015 BER
- MINUNNO ET AL. 2016 ECOMOD, 2019 FORECO

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

PROCLIAS & ISIMIP Prague

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CALCULATING BIODIVERSITY INDICATORS

- Average mortality => deadwood
- Deciduous mixture
- Indicators based on stand structure => species occurrence (Mönkkönen et al. 2014)
 - 5 bird species
 - Flying squirrel

MANAGEMENT SCENARIOS (2021-2050)

- Management strategies (4)
 - Base: National recommendations
 - 3 modified strategies

- Harvest levels (3)
 - Reference ~80 Mm³ v⁻¹ (BAU)
 - High ~ 90
 - Low ~ 50
 - No prescibed harvest level (harvest level follows from management strategy) MD

DD

8

- Protection alternatives (2)
 - Current (~8%)
 - Extended (total 13%)

Measure	Climate change adaptation	Climate change mitigation	Biodiversity protection
Regeneration	Species to fit the site	Same species as before	Same species as before
Species	Favour broad-leaf mixtures (+ 20% birch at plantation).		Birch mixture with spruce an pine at least 20% of stocking
Rotation	Shortened by 5-10 years	Lengthened by 25%	Lengthened by 25-30%
Thinnings and tending	On time	High thinning at age > 50	
Harvest residues	-	Leave on site	Leave on site
Fertilisation	At sites poorer than mesic heath	-	-
Retention trees	-	-	Leave trees larger than 20 c as retention trees (incl. broadleaves), 5-10 % of harvest volume in total
Cutting rules if supply greater than demand	-	Cuttings from the most productive sites preferred (site classes 1 and 2)	Cuttings from the most productive sites preferred (s classes 1 and 2)
		No cuttings from forests older than 120 yr	No cuttings from forests olde than 120 yr
Protection areas			Buffer zones of 200m aroun protected areas

PROCLIAS & ISIMIP Prague6.6.2023

Simulations

- Reference historical cutting levels 2015-2021
- Scenario simulations 2022-2050
- Regional allocation of cuttings
- Sampling by 19 regions (20000 samples)
- Current climate (daily)
- (+ climate scenarios, not here)
- RESULTS: 6 C and 8 BD indicators presented as national means / ha (maps available)
- Tested against national statistics for consistency

Cutting levels determined by rotation length and harvest residues removal

Tree biomass Tree biomass kgC ha-1 kgC ha-1 24000 2400 48000 48000 72000 72000 96000 96000 120000 120000 Current regional harvest Base strategy levels

Period 2034-2050

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Maatalous-metsätieteellinen tiedekunta

PROCLIAS & ISIMIP Prague

Period 2017-2025

RESULTS: DEMAND DRIVEN

- Harvest levels pre-determined
- Management strategies limit harvests in high harvest scenarios
- Can be fixed by regional re-allocation
- All C indicators depend strongly on harvest level, only marginally on strategy

PROTECTED AREA EXTENDED TO MIN 10% IN ALL REGIONS

Demand-driven

Management-driven All C indicators improved <= cuttings reduced

No change in cuttings No change in C indicators

Summary of period mean C balance indicators vs harvest level

Summary: mean BD indicators

- Harvest level was key to carbon stocks and fluxes regardless of management actions and moderate changes in proportion of strictly protected forest.
- In contrast, biodiversity was more dependent on other management variables than harvesting levels, and relatively independent of carbon stocks and fluxes.
- Increasing protected area even while maintaining cutting levels can benefit biodiversity conservation
- Model development & application to climate change adaptation under way
- See forthcoming AMBIO special issue!

Thank you!

Annikki.makela@helsinki.fi www.ibccarbon.fi @IBCCarbon

UNIVERSITY OF HELSINKI

6.6.2023

Biodiversity indicators

Temporal mean values (2021-2050) of national mean biodiversity indicators in all management-driven and demand-driven scenarios. Filled symbols are with extended protected area (at least 10% in all regions, 13.7% nationally), open symbols are with current protected area (8.5% nationally). In the symbols, colour indicates management strategy (legend in Figure 10a) and each have one free and three constrained harvest levels.

Modelling tree carbon stock changes under different harvest and climate scenarios

