

Quantifying food security and mitigation risks consequential to climate change impacts on crop yields

ISIMIP/PROCLIAS workshop 2023

Hermen Luchtenbelt - PBL

PBL Netherlands Environmental

Assessment Agency

Background

Ensemble end-of-century crop productivity response (Jägermeyr et. al, 2021)

- Global crop productivity likely to be impacted under climate change
 - Changing precipitation / extreme temperatures (IPCC 2022)
 - CO₂ fertilization
- Recent GGCMI-CMIP6 model comparison show large uncertainty
- Yield impacts emerge before 2040
- Effects on food security and mitigation targets?

Background

- SDG 2: By 2030, end hunger and ensure access by all people, in particular the poor and people in vulnerable situations, including infants, to safe, nutritious and sufficient food all year round
- SDG 13: Take urgent action to combat climate change and its impacts
- Paris agreement: avoid dangerous climate change by limiting global warming to well below 2°C and pursuing efforts to limit it to 1.5°C

Integrated Assessment Model IMAGE

- Model framework
 - Interaction between the human and earth system
 - Stehfest et. al, 2014
- MAGNET: agro-economy
- TIMER/fair: climate and energy

Integrated Assessment Model IMAGE

- Model framework
 - Interaction between the human and earth system
- MAGNET: agro-economy
- TIMER/fair: climate and energy
- Crop mapping following (Janssens et al., 2020) and (Müller & Robertson, 2014)
 - To convert four main crops to
- Mitigation policies: Limit GW well below 2°C

Crop type	IMAGE LPJmL mapping
Wheat	Wheat productivity changes directly applied
Rice	Rice productivity changes directly applied
Maize	Maize productivity changes directly applied
Tropical Cereals (millet, sorghum)	Modified corn yields where only half of the negative effects are applied due to better drought tolerance
Other temperate cereals (rye, barley)	Modified wheat yields where only half of the negative effects are applied due to better drought tolerance
Soybeans	Soybean productivity changes directly applied
Pulses (field peas), temperate oil crops (rapeseed, sunflower), tropical oil crops (groundnuts), temperate roots & tubers, tropical roots & tubers, sugar crops, oil & palm fruit	C_3 crops are represented by the average of three modelled C_3 crops (wheat, rice and soybean)

Model selection

- To get a good representation of the different climate-crop combinations:
 - two pessimistic, optimistic model and average climate-crop model combinations are used (from Jägermeyr et. al, 2021)

RCP	Climate model (GCM)	Crop model (GGCM)
RCP26	Mri-esm2-0	Promet
RCP26	Mri-esm2-0	Crover
RCP26	Ukesm1-0-II	Simplace-
RCP26	Mri-esm2-0	Lpjml
RCP26	Ukesm1-0-II	Crover
RCP26	Mpi-esm-1-2-	Dssat-pythia
RCP85	Ukesm1-0-II	Acea
RCP85	Ukesm1-0-II	Simplace-
RCP85	Gfdl-esm4	Epic-iiasa
RCP85	Mri-esm2-0	Epic-iiasa
RCP85	lpsl-cm6a-lr	Реріс
RCP85	Gfdl-esm4	Dssat-pythia

Scenario setup

- To get a good representation of the different climate-crop combinations:
 - two pessimistic, optimistic model and average climate-crop model combinations are used
- Socio-economics: SSP2 for all scenario's
- Climate mitigation policy based on RCP2.6!
 - To limit GW well below 2°C

RCP	Climate model (GCM)	Crop model (GGCM)	Socio- economics	Climate Policy- target
RCP26	Mri-esm2-0	Promet	SSP2	2.6
RCP26	Mri-esm2-0	Crover	SSP2	2.6
RCP26	Ukesm1-0-II	Simplace- Lintul5	SSP2	2.6
RCP26	Mri-esm2-0	Lpjml	SSP2	2.6
RCP26	Ukesm1-0-II	Crover	SSP2	2.6
RCP26	Mpi-esm-1-2- hr	Dssat-pythia	SSP2	2.6
RCP85	Ukesm1-0-II	Acea	SSP2	2.6
RCP85	Ukesm1-0-II	Simplace- Lintul5	SSP2	2.6
RCP85	Gfdl-esm4	Epic-iiasa	SSP2	2.6
RCP85	Mri-esm2-0	Epic-iiasa	SSP2	2.6
RCP85	lpsl-cm6a-lr	Реріс	SSP2	2.6
RCP85	Gfdl-esm4	Dssat-pythia	SSP2	2.6

Preliminary results

Impacts on agricultural production

Crop area and yields in 2085*

 Increase in global cropland area by almost 10% in the pessimistic scenarios (RCP 8.5)

-125

PBL Netherlands Environmental Assessment Agency

Impacts on agricultural production

Change in cropland area by region 2085 - RCP85

- Increase in global cropland area by almost 10% in the pessimistic scenarios (RCP 8.5)
- Regional impacts:
 - Asia highest impacts on total cropland area: difference up to 200 million

Food security

- Higher level of food insecurity only in pessimistic models
- On average decreasing undernourishment compared to no CC

Food security

Change in undernourishment (2085) - RCP85

- Higher level of food insecurity only in pessimistic models
- On average decreasing undernourishment compared to no CC
- Middle east and northern Africa impacted most, also difference between models greatest.
 - Food security targets affected by crop yield impacts

> Set of 'optimistic' and some 'average' models show an increase in energy from biomass and renewable energy shares

> > MR-PR & UK-AC IP-PR & MR-AC

MR-EP & GF-EP

GF-LP & MR-CY UK-CR & IP-PE

MR-CY & IP-PD
No climate change impacts

Mitigation targets

Energy from biomass compared to no CC (2085) - RCP85

- Set of 'optimistic' and some 'average' models show an increase in energy from biomass and renewable energy shares
- Temperature difference can be up to 0.1 degrees for RCP85 productivity impacts, and 0.07 degrees for RCP26
 - Mitigation efforts may not align with policy target!

Conclusion

- Large uncertainty in crop productivity responses affect IAM model simulation results
- Mitigation and food security policies may fall short:
 - SDG 2: Pessimistic model combinations show that global hunger might increase in some regions, as crop prices increase
 - SDG 13: There is a difference of 0.1 degrees
 - Which can be quite significant in reaching mitigation targets

ISIMIP/PROCLIAS workshop 2023

Hermen Luchtenbelt - PBL

Primary energy share - 1971

Change in Calorie demand (2070-2100)

Change in Biomass Energy (2070-2100)

Mitigation targets

Change in Renewable energy share (2070-2100)

Regional impacts

Optimistic

Average

Pessimistic

	Ukes	sm1-0) - I I	Acea		Μ	Mri-esm2-0 Acea						Gfdl-esm4 Epic-						2 - 0				Ips	l-cm6	a-lr	Pep:	Ipsl-cm6a-lr Pdssat					
Cropland -	-12.5	-17.2	-9.4	-18.0	-21.8	2	5.5 -26	.7 -10	5 -21.2	-23.3		- <u>11</u> a: 8.6	sa -6.1	-5.3	-4.6	-5.6	CV0 14.3	ma1p 29.5	74 -0.1	8.7	-5.6		7.9	18.1	5.4	14.1	-1.2	9.9	14.5	6.7	14.4	0.7
Non-energy crops -	-2.9	-0.1	6.5	9.6	4.1	- 4	.1 -2	2 7.3	12.3	-0.6		- 1.1	0.5	4.0	2.9	-1.3	6.5	-4.2	6.4	-1.7	1.1	-	-1.7	2.5	-5.0	-6.4	-1.6	3.3	1.0	-2.6	-4.9	-1.9
Crop price -	-19.7	-15.8	-15.9	-30.6	-23.4	2	5.3 -22	.1 -18	5 -37.2	-17.0		-10.2	-8.4	-8.2	-14.4	-1.3	1.9	9.4	0.3	10.8	2.4		16.1	22.9	20.7	72.2	21.5	- 5.8	12.9	12.1	38.1	12.5
Food Demand -	3.8	3.0	2.7	3.6	2.8	- 4	.6 4.	1 3.6	4.6	3.3		- 1.5	1.0	1.5	1.4	2.0	0.8	-0.5	-0.2	-0.3	0.4	-	-1.3	-1.2	-1.7	-2.5	-1.0	- 0.2	-0.1	-1.2	-1.1	-0.0
Risk of Hunger -	-36.0	-19.1	-19.6	-32.8	-25.5	4	3.7 -23	.5 -26	0 -39.9	-30.9		-16.4	-8.2	-13.0	-15.1	-19.6	2.8	3.7	-2.0	16.0	-4.9		30.1	8.4	21.0	44.3	11.0	7.2	1.7	13.8	25.0	1.6
Forest -	0.5	7.9	7.0	8.0	1.9	- 4	.8 10	6 6.9	10.4	2.6		1.1	3.6	0.5	1.7	-0.1	6.7	-10.4	-9.8	-7.4	0.5	-	-3.4	-7.5	-11.0	-10.3	0.2	5.1	-5.5	-8.6	-10.8	-0.3
Bioenergy demand -	43.5	4.8	23.2	85.5	112	- 2	5.7 9.	2 16.	106	76.6		- 395	1.5	8.3	8.6	42.6	34.5	-15.7	6.4	-10.8	23.6	-	36.3	-7.7	5.6	-16.1	57.3	46.7	2.3	-10.4	-16.5	15.9
Pasture -	1.8	-4.0	0.0	1.3	2.3	- 3	.4 -4	9 0.0	1.6	2.2		- 1.2	-1.6	0.0	0.4	0.9	- 0.5	-0.3	0.0	-0.1	0.5	-	-1.1	1.5	0.0	-0.4	-0.7	0.5	0.9	0.0	-0.5	0.4
	LAM	MAT	ASIA	SECO	REF	P	in phat	ASIA	OFCD	REF		An	MAY	ASIA	SECD	REF	An	MAT	ASIA	OFCD	REF		Jan	MAY	ASIA	FCD	REF	Jan	MAF	ASIA	JECD	REF.
											%	Char	nae o	comi	pare	d to	no c	lima	te cl	hand	le											

