Annika Schlemm¹, A. Nkwasa¹, K. Frieler², Y. Wada³, T. Tang³, M. Mulligan⁴, A. van Griensven¹

¹Vrije Universiteit Brussel; ²Potsdam Institute for Climate Impact Research; ³International Institute for Applied Systems Analysis; ³King's College London

Incorporating stakeholder feedback into the modelling concept A case study of the Lake Victoria basin

International Institute for A S A A S A

CONTACT: annika.schlemm@vub .be www.annikaschlemm. com

STAKEHOLDER

- Individuals, groups, or institutions that have a defined and recognised interest in a decision-making process
 - Will be affected by decision or have an influence on its outcome
- Components include:
 - Access to information
 - Participation in decision making
 - Access to justice
- Relationship between socio-ecological systems and the climate are interconnected
- Widely recognised that public participation is integral to effective management of natural resources (1992 Rio Declaration on

WEF NEXUS

- Socio-ecological systems are fundamental to the water-energy-food (WEF) nexus
- Difficulties translating WEF nexus theory into practice
- Cross-sectoral participation and coproduction of knowledge is required to address this and ensure solutions address stakeholder needs and are fitfor-purpose

- Extends into Uganda, Kenya, Tanzania, Burundi, and Rwanda and drains an area of 351,500 km²
- Most **densely populated** rural regions in the world
- Economically supports approx. **70 million people**
- Fisheries, agriculture, hydropower generation, tourism, transboundary conservation
- Many environmental challenges

WEF NEXUS MODEL

		WEF nexus challenges										
		Water quantity	Water quality	Energy prod.	Crop prod.	Fisheries	Land degr.	Aquatic eco.	Invasive species	Eutroph.	%	
Model	CLEWs										33	%
	DAFNE										67	91 – 100
	Daily Model										33	81 – 90
	Foreseer										33	71 – 80
	GREAT for FEW										22	61 – 70
	ITEEM										33	51 – 60
	MAXUS										22	41 – 50
	MuSIASEM										22	31 – 40
	NEST										22	21 – 30
	PRIMA										33	11 – 20
	Q-Nexus										33	0 – 10
	SIM4NEXUS										56	-
	WEAP-LEAP										22	
	WEF Nexus Index										33	
	%	93	21	86	71	7	14	7	0	0		

36% consulted stakeholders during the development of nexus indicators and model integration

Limited inclusion of water quality and ecosystem indicators

NEXUS INDICATORS

NEXUS INDICATORS

Every proposed indicator discussed by stakeholders

Shows priorities for future WEF nexus research

Ensures research is fit for purpose and addressing most pressing challenges

CLIMATE CHANGE

- SWAT+ (Soil Water and Assessment Tool) simulations for water quantity, water quality, and crop yield
- Historical (1971-2000) and future (2071-2100) simulations
- 5 GCMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL) from the biascorrected CMIP6 climate forcing data for historical and future

• SSP5-RCP8.5 conditions viewas us in estimate change impacts on sediment yield: An application in the Nile basin.

Nkwasa, A. et al (2022). Can the cropping systems of the Nile

basin be adapted to climate change? Regional Environmental

CLIMATE CHANGE

 Climate change will have impacts on WEF nexus resources:

> Increase in water flow Increase in hydropower production

Decrease in water quality

• increase in TN, TP, and soil

erosion

Decrease in crop yield

• Trends are spatially heterogenous

FUTURE WORK

- Couple SWAT+ with ecological model (Ecopath with Ecosim) to address environmental and ecological indicators
- Further stakeholder meetings to develop future management and adaptation scenarios and provide feedback on current work
- Undertake WEF nexus modelling of future scenarios (including **ISIMIP forcing data**)
- Disseminate results to stakeholders

Annika Schlemm¹, A. Nkwasa¹, K. Frieler², Y. Wada³, M. Mulligan⁴, A. van Griensven¹

¹Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel; ²Potsdam Institute for Climate Impact Research; ³International Institute for Applied Systems Analysis; ³King's College London

Thank you for Istenio Annika b.be Annika Schlemm

annikaschlemm.com

@AnnikaSchlem m

Appendices

Normalising the WEF nexus indicators

Equation 1 is used when the minimum (*xi*) of the indicator is the least preferred value and Max (*xi*) is the most preferred value, where Eq. 2 is used for the opposite situation. Xi refers to normalized indicator, *xi* actual value of the indicator, Min (*xi*) and Max (*xi*) are the minimum and maximum values of the indicator

1)
$$X_i = rac{x_i - \operatorname{Min}\left(x_i
ight)}{\operatorname{Max}\left(x_i
ight) - \operatorname{Min}\left(x_i
ight)}$$

2) $X_i = rac{\operatorname{Max}\left(x_i
ight) - x_i}{\operatorname{Max}\left(x_i
ight) - \operatorname{Min}\left(x_i
ight)}$

Calculating the impacts of climate change

Equation 3 is used to calculate the impacts of climate change (%) on the WEF nexus indicator, where *Sc* is the future indicator value under climate change (2070-2100), and *So* is the historical indicator value (1970-2000)

$$\mathrm{CC_{i}} = \left(\frac{\mathrm{S_{c}} - \mathrm{S_{o}}}{\mathrm{S_{c}}}\right) \mathrm{x100}$$

El-Gafy (2017). Water-food-energy nexus index: analysis of waterenergy-food nexus of crop's production system applying the