

Possible role of climate change in the record-breaking 2020 Lake Victoria levels and floods

Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery

Attributing the 2020 Lake Victoria floods in East Africa

Kenya floods kill 194, people evacuated from risk areas near dams

by Reuters Wednesday, 6 May 2020 11:25 GMT

Lake Victoria now at record high 13.42 metres

👗 The Independent 🛛 May 8, 2020 🖿 The News Today 🔍 Leave a comment

\rightarrow Did climate change play a role?

Did anthropogenic climate change increase the **probability or intensity** of the flooding in the Lake Victoria area in mid-2020?

1. Remote sensing

Modelling the water balance of Lake Victoria (East Africa) – Part 1: Observational analysis

Inne Vanderkelen¹, Nicole P. M. van Lipzig², and Wim Thiery^{1,3}

2. Water balance model

A protocol for probabilistic extreme event attribution analyses

Sjoukje Philip¹, Sarah Kew¹, Geert Jan van Oldenborgh¹, Friederike Otto², Robert Vautard³, Karin van der Wiel¹, Andrew King⁴, Fraser Lott⁵, Julie Arrighi⁶, Roop Singh⁶, and Maarten van Aalst⁶

3. EEA protocol

WWA-style extreme event attribution

A high impact event

- Lake Victoria basin within 50 km of shores April - June 2020
- 650 km²
- 30k people

Lake levels and precipitation were record-breaking in 2020

Above-average precipitation from May 2019 – May 2020

Flood event **defined** as a **180-day rate of change in lake levels**

 $\Delta L/\Delta t$ for Δt = previous 180 days (m)

November-May 2020 levels rose by **1.2 m**

Change in likelihood from observations

In today's climate the flood is a **63-year event** (27 - 395 years) The event is modelled **1.7 times more likely in the present-day climate** but the CI includes **no change** (0.3 - 3.9)

9

Water balance model reproduces lake level variations well but with some muting of the tails

Lake levels: observed and modelled with observational precipitation (m a.s.l.)

Ensemble of CMIP6 models bias corrected within ISIMIP3b represent spatial and seasonal pattern of precipitation well

CMIP6 models

Change in probability and intensity from hist and hist-nat models

hist

- Model-specific magnitude threshold
- GEV shift fit on historical and hist-nat simulations
- Change in likelihood and intensity of event in a 'factual' 2020 climate vs. a 'counterfactual' 2020 climate

Synthesis models and observations

Best estimate **1.8 times more likely** in present climate Cl includes **no change (0.8 - 15.8)**

Reflections on ISIMIP3b-based event attribution

- Small model ensemble
- Spread of model representation of **GMST** for shift fit-based event attribution
- **Bias correction** \rightarrow intra vs. inter-model disagreement
- Comparison with **ISIMIP3a** attribution

CMIP6 ISIMIP3BASD

hist

Conclusions

High-impact event

Lake levels were **record-breaking**

Driven by above-average **precipitation and inflow**

Today approximately a **63-year event**

Possible role of climate change increasing likelihood of event by **1.8 times (0.8 – 15.8)** , intensity by **7 cm (0 – 14 cm)**

High natural variability \rightarrow uncertainty

Other drivers:

- human land and water management
- exposure changes
- modes of climate variability (e.g., IOD)

rosa.pietroiusti@vub.be

100

Chini, Marco, Renaud Hostache, Laura Giustarini, and Patrick Matgen. 2017. "A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case." *IEEE Transactions on Geoscience and Remote Sensing* 55 (12): 6975–88. <u>https://doi.org/10.1109/TGRS.2017.2737664</u>.

Otto, Friederike E.L. 2017. "Attribution of Weather and Climate Events." *Annual Review of Environment and Resources* 42 (1): 627–46. <u>https://doi.org/10.1146/annurev-environ-102016-060847</u>.

Philip, Sjoukje, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, et al. 2020. "A Protocol for Probabilistic Extreme Event Attribution Analyses." *Advances in Statistical Climatology, Meteorology and Oceanography* 6 (2): 177–203. <u>https://doi.org/10.5194/ascmo-6-177-2020</u>.

Vanderkelen, Inne, Nicole P.M. Van Lipzig, and Wim Thiery. 2018. "Modelling the Water Balance of Lake Victoria (East Africa)-Part 1: Observational Analysis." *Hydrology and Earth System Sciences* 22 (10): 5509–25. https://doi.org/10.5194/hess-22-5509-2018.

Vanderkelen, Inne, Nicole P.M. Van Lipzig, and Wim Thiery. 2018. "Modelling the Water Balance of Lake Victoria (East Africa)-Part 2: Future Projections." Hydrology and Earth System Sciences 22 (10): 5527–49. https://doi.org/10.5194/hess-22-5527-2018.

Future work

- Scientific evidence used in **youth-led climate litigation**
- Work with stakeholders in climate litigation
- Attributable harms to youth and children today & accumulated risks projected in the future

Temporal trends in annual and seasonal precipitation totals in the Lake Victoria basin, (PERSIANN-CDR,1983 – 2020)

Missing data filled with climatology

Data	return period in 2020 climate (years)	return period in 1900 climate (years)	probability ratio (PR)	Intensity change (m)						
Observations and observational precipitation										
Observations										
(1897–2020)	63 (27, 395)	104 (43, 1100)	1.7 (0.3, 3.9)	0.11 (0, 0.23)						
Observational	$34(12,\infty)$	$79(16,\infty)$	2.3 (0, 6.6)	0.14 (-0.18, 0.53)						
WBM (1983–										
2020)										
GCM historical-ssp370 (ISIMIP3BASD)										
CanESM5	63 (21, 335)	142 (57, 1160)	2.2 (0.4, 6.6)	0.08 (-0.03, 0.21)						
CNRM-CM6-1	63 (23, 307)	66 (34, 253)	1.1 (0.2, 2.9)	0.01 (-0.13, 0.16)						
GFDL-ESM4	63 (16, 711)	88 (43, 464)	1.4 (0.1, 5.4)	0.03 (-0.08, 0.15)						
IPSL-CM6A-LR	63 (28, 300)	85 (42, 813)	1.3 (0.3, 3)	0.04 (-0.07, 0.15)						
MRI-ESM2-0	63 (26, 358)	86 (43, 383)	1.4 (0.2, 3.3)	0.05 (-0.09, 0.19)						
GCM hist-nat (ISIMIP3BASD)										
CanESM5	$170(58,\infty)$	139 (53, 65000)	0.8 (0, 2.4)	-0.02 (-0.06, 0.02)						
CNRM-CM6-1	97 (46, 1634)	85 (37, 1340)	0.9 (0.1, 1.8)	-0.01 (-0.06, 0.03)						
GFDL-ESM4	69 (28, 1580)	55 (30, 323)	0.8 (0, 2)	-0.02 (-0.09, 0.04)						
IPSL-CM6A-LR	129 (50, 4910)	132 (55, 2440)	1 (0, 2.7)	0 (-0.05, 0.05)						
MRI-ESM2-0	$139(54,\infty)$	136 (56, 61900000)	1 (0, 2.5)	0 (-0.02, 0.01)						

Supplementary slide:

Results of non-stationary GEV fits to estimate change in the return period of the 2020 flood event in observations, historical and hist-nat GCM simulations **Table 2.** Validation results based on seasonal cycle, spatial pattern and fitted scale σ and shape ξ parameters, with 95% confidence intervals in brackets. For observations, the magnitude of the 2020 event is shown and for GCMs the estimated magnitude of a 63-year event in the current climate based on a non-stationary GEV fit. The location parameter μ_{new} represents the current climate. Rejected models are shown in italics.

Data	Seasonal cycle	Spatial pattern	Magnitude (m)	μ_{new} (m)	σ (m)	ξ	Conclusion			
Observations and observational precipitation										
Observations (1897–2020) Observational WBM (1983–2020)			1.21 0.94	0.33 (0.23, 0.44) 0.32 (0.2, 0.5)	0.21 (0.18, 0.24) 0.18 (0.14, 0.22)	0.01 (-0.12, 0.13) -0.03 (-0.69, 0.28)				
GCM historical-ssp370 (ISIMIP3BASD)										
CanESM5 CNRM-CM6-1 GFDL-ESM4 IPSL-CM6A-LR <i>MIROC6</i>	good good good good good	reasonable reasonable reasonable reasonable reasonable	0.99 1.08 0.9 0.95 0.64	0.38 (0.27, 0.5) 0.31 (0.18, 0.46) 0.34 (0.22, 0.48) 0.3 (0.20, 0.41) 0.31 (0.25, 0.39)	0.2 (0.18, 0.22) 0.25 (0.22, 0.28) 0.2 (0.17, 0.22) 0.19 (0.17, 0.21) 0.17 (0.16, 0.19)	-0.15 (-0.23, -0.07) -0.15 (-0.23, -0.06) -0.19 (-0.29, -0.1) -0.10 (-0.22, -0.01) -0.45 (-0.54, -0.36)	good good good good rejected due to statistical parameters			
MRI-ESM2-0	good	reasonable	1.16	0.36 (0.25, 0.49)	0.24 (0.21, 0.26)	-0.11 (-0.2, -0.01)	good			