

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Combining Future Projections of Land-Use and Climate Change Impacts on Biodiversity

Chantal Hari

Thomas Hickler, Christian Hof, Christopher Reyer, Inne Vanderkelen, Alke Voskamp, Markus Fischer, Édouard Davin

Wyss Academy for Nature, University of Bern, Bern, Switzerland

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland

Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Prague, 07.06.2023

- "Climate change has altered marine, terrestrial and freshwater ecosystems all around the world (very high confidence)." [IPCC, AR6, 2022]
- "Land-use and land cover change reduces and fragments habitats and is currently the leading cause of terrestrial biodiversity loss." [IPBES-IPCC, 2021]

The Combined Impact of Climate Change and Land-Use Change Projections on Biodiversity

Research Question: How do the combined stressors of climate and land-use change impact terrestrial biodiversity on a global scale under different scenarios and in different points in the future?

LAND-USE CHANGE

Research Gap: Land-use trajectories are mostly missing in climate change impact studies on biodiversity.

Species range maps

LAND-USE CHANGE

Methods and Data for Species Distribution Models

- ISIMIP2b:
- Current: bias-corrected meteorological forcing dataset EWEMBI from 1980 - 2009
- Future: bias-corrected global climate data
 - for four GCMs (GFDL-ESM2M, IPSL-CM5A-LR, MIROC5, HadGEM2-ES) and
 - two climate scenarios (RCP2.6,RCP6.0),
 - at **0.5° x 0.5°** resolution
- Bioclimatic variables: annual mean temperature, temperature seasonality, annual precipitation, precipitation seasonality

Species Distribution Models (SDM)

- General Additive Models (GAM)
- Generalized Boosted Regression Model (GBM)

- 2705 Amphibians
- 6363 Reptiles
- 7262 Birds

- IUCN Red List of Threatened Species
 - Mammals
- Amphibians
- Reptiles
- Birdlife International and NatureServe
 - Birds

Hof et al. 2018 Biber et al. 2023

SDM Output: Probability of Occurrence in 2050

Applying a Land-Use Change Filter

Applying a Land-Use Change Filter

Results Change in Species Richness in Mammals 2050-1995 for RCP2.6

Climate Change Impact

Climate and Land-Use Change Impact

200

Results Change in Species Richness in Mammals 2050-1995 for RCP2.6

11

Results Change in Species Richness in Mammals for RCP2.6

Climate Change Impact

Land-Use Change Impact

Results Change in Species Richness in Mammals for RCP2.6

Climate Change Impact

Land-Use Change Impact

Results Change in Species Richness in Mammals for RCP6.0

Climate Change Impact

Land-Use Change Impact

Results Change in Species Richness in Amphibians for RCP2.6

Climate Change Impact

Land-Use Change Impact

Results Change in Species Richness in Amphibians for RCP6.0

Climate Change Impact

Land-Use Change Impact

Conclusion and Outlook

- Climate change and land-use change are key stressors for biodiversity
- The **impact varies** geographically and between different taxa
- Land-use change is a driving force for biodiversity in many areas

Outlook:

- Sensitivity analysis
 - Model uncertainty
 - Assumptions in habitat selection
 - Dispersal scenarios
- Validation
- Use ISIMIP3b land use patterns
- Regional study in Kenya for elephant corridors

UNIVERSITÄT BERN

DESCHGER CENTRE CLIMATE CHANGE RESEARCH

Combining Future Projections of Land-Use and Climate Change Impacts on Biodiversity

Chantal Hari

Thomas Hickler, Christian Hof, Christopher Reyer, Inne Vanderkelen, Alke Voskamp, Markus Fischer, Édouard Davin

Wyss Academy for Nature, University of Bern, Bern, Switzerland Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

🖄 chantal.hari@unibe.ch

Habitat Classifications

	name	result.code	result.habitat	result.suitability	result.season	result.majorimportance
1	Martes melampus	1.4	Forest - Temperate	Suitable	NA	Yes
2	Martes melampus	14.5	Artificial/Terrestrial - Urban Areas	Marginal	NA	NA
3	Martes melampus	3.4	Shrubland - Temperate	Marginal	NA	NA

IUCN-LUH2 conversion table from Carlson et al. 2022

IUCN Habitats	IUCN_hab	LUH	LUH2	
1.1. Forest – Boreal		1.1 primf.secdf	primf	forested primary land
1.2. Forest - Subarctic		1.2 primf.secdf	primn	non-forested primary land
1.3. Forest – Subantarctic		1.3 primf.secdf	secdf	potentially forested secondary land
1.4. Forest – Temperate		1.4 primf.secdf	secdn	potentially non-forested secondary land
1.5. Forest – Subtropical/tropical dry		1.5 primf.secdf	pastr	managed pasture
1.6. Forest – Subtropical/tropical moist lowland		1.6 primf.secdf	range	rangeland
1.7. Forest – Subtropical/tropical mangrove vegetation above high tide level		1.7 primf.secdf	urban	urban land
1.8. Forest – Subtropical/tropical swamp		1.8 primf.secdf	c3ann	C3 annual crops
1.9. Forest – Subtropical/tropical moist montane		1.9 primf.secdf	c3per	C3 perennial crops
2.1. Savanna - Dry		2.1 primn.secdn	c4ann	C4 annual crops
2.2. Savanna - Moist		2.2 primn.secdn	c4per	C4 perennial crop
3.1. Shrubland – Subarctic		3.1 primn.secdn	c3nfx	C3 nitrogen-fixing crops
3.2. Shrubland – Subantarctic		3.2 primn.secdn	secma	secondary mean age (units: years)
3.3. Shrubland – Boreal		3.3 primn.secdn	secmb	secondary mean biomass density (units: kg C/m^2)
3.4. Shrubland –Temperate		3.4 primn.secdn		
3.5. Shrubland – Subtropical/tropical dry		3.5 primn.secdn		
3.6. Shrubland – Subtropical/tropical moist		3.6 primn.secdn		
3.7. Shrubland – Subtropical/tropical high altitude		3.7 primn.secdn		
 Shrubland – Mediterranean-type shrubby vegetation 		3.8 primn.secdn		
4.1. Grassland – Tundra		4.1 primn.secdn		
4.2. Grassland – Subarctic		4.2 primn.secdn		
4.3. Grassland – Subantarctic		4.3 primn.secdn		
4.4. Grassland – Temperate		4.4 primn.secdn		
4.5. Grassland – Subtropical/tropical dry		4.5 primn.secdn		
4.6. Grassland – Subtropical/tropical seasonally wet/flooded		4.6 primn.secdn		
4.7. Grassland – Subtropical/tropical high altitude		4.7 primn.secdn		