Water Quality Session 1: Modeling protocol

Maryna Strokal and Rohini Kumar

Task Group 3.9 in PROCLIAS Cost Action Coordination team

Maryna Strokal

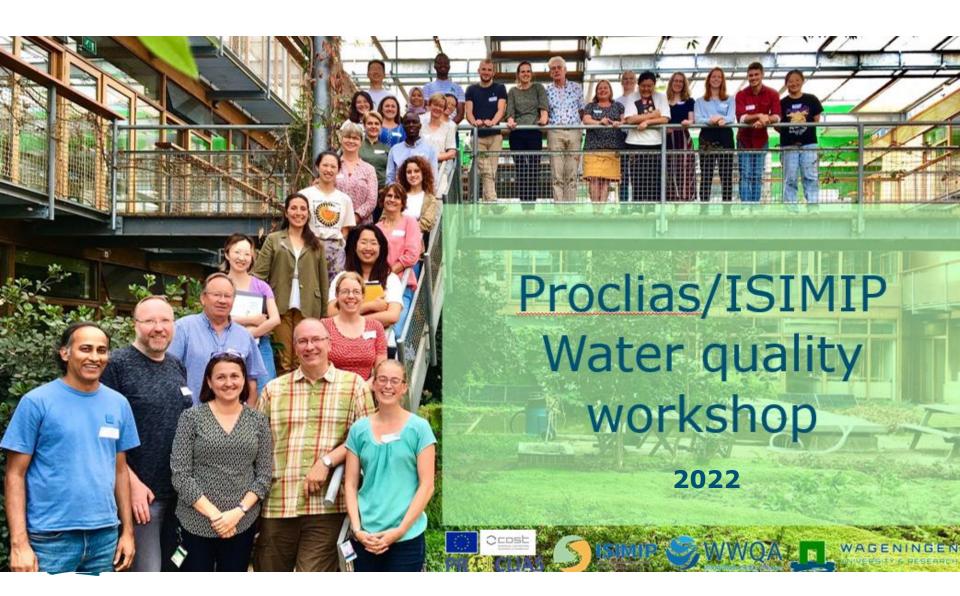
Michelle van Vliet

Simon Gosling

Martina Flörke

Rafael Marcé

Rohini Kumar



Large international community

Water quality sessions

- Session 1 (today 15.30-17.00): modelling protocol
- Session 2 (tomorrow 10.00-11.30): regional modelling
- Session 3 (tomorrow 13.00-14.00): updates, posters, next steps

Program 15.30-17.00

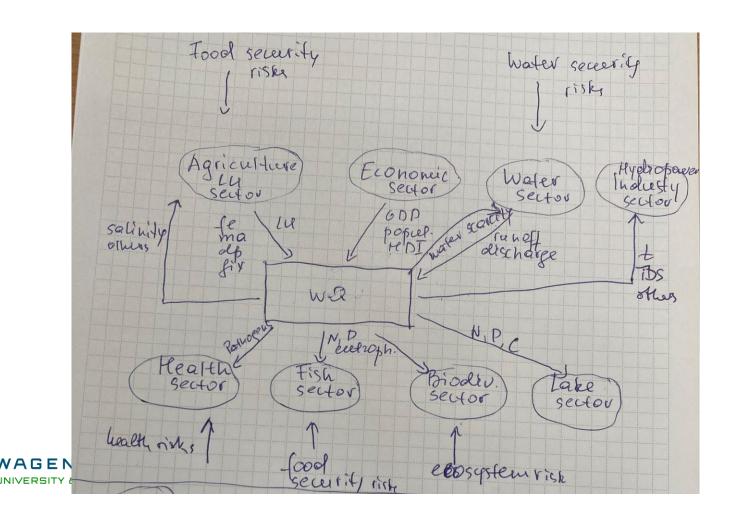
15.30-15.50 Introduction to the protocol

15.50-16.45 Discussion

16.45-17.00 Follow-up activities

Important terminology

- WQ-MIP: Water Quality Model Intercomparison Project
- ISIMIP: Inter-Sectoral Impact Model Intercomparison Project
- Proclias: Process-based models for climate impact attribution across sectors
- CMIP: Coupled Model Intercomparison Project (climate forcing)
- WWQA: World Water Quality Alliance
- SSP: Shared Socio-economic Pathways
- RCP: Representative Concentrative Pathways



ISIMIP2 vs ISIMIP3

	ISIMIP2	ISIMIP3
Pre-industrial	1661-1860	1661-1850
Historical	1860-2005	1850-2014
Projections	2005 -2100	2015 -2100
RCP	2.6	2.6
	6.0	7.0
	8.5	8.5
RCP-SSP	2.6-ssp2	2.6-ssp1
	6.0-ssp2	7.0-ssp3
		8.5-ssp5
WQ scenarios	4.5/2.6-ssp1	Next steps /
(available)*	6.0-ssp2	update
	8.5-ssp5	
CMIP	CMIP5	CMIP6

^{*}The scenarios of the UN-World Water Quality Alliance (WWQA)

Water quality is key in understanding cross-sectoral processes

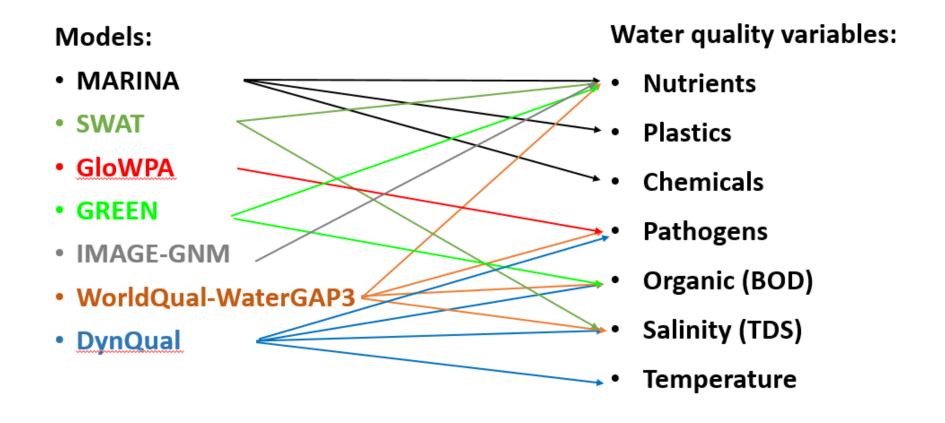
- Water quality is key in understanding cross-sectoral processes
- Build the water quality community within ISIMIP/Proclias
- Together, we can contribute to new insights

- Water quality is key in understanding cross-sectoral processes
- Build the water quality community within ISIMIP/Proclias
- Together, we can contribute to new insights
- 1) Identify, assess and compare water pollution
 - Hotspots
 - Sources
 - Trends

- Water quality is key in understanding cross-sectoral processes
- Build the water quality community within ISIMIP/Proclias
- Together, we can contribute to new insights
- 1) Identify, assess and compare water pollution
 - Hotspots
 - Sources
 - Trends
- 2) Identify and set priories for water quality
 - Data collection
 - Data monitoring

- Water quality is key in understanding cross-sectoral processes
- Build the water quality community within ISIMIP/Proclias
- Together, we can contribute to new insights
- 1) Identify, assess and compare water pollution
 - Hotspots
 - Sources
 - Trends
- 2) Identify and set priories for water quality
 - Data collection
 - Data monitoring
- 3) Perform scenario analyses to test strategies to
 - Improve water quality
 - Under climate change and socioeconomic developments

Five types of diversity challenge WQ-MIP


1) Different modeling approaches: 1) laws & assumptions; 2) spatial representation (lumped vs. distributed) and 3) temporal representation (static vs. dynamic)

- 2) Different water quality constituents and dimensions
 - Different forms
 (dissolved vs. particulate)
 - Loads, concentrations, export
- 4) Different spatial resolutions and extend
 - Basin, subbasin
 - Gridded <u>e.g.</u> 0.5 deg (50 km),
 5 arcmin (10 km)
 - Hydrological response unit

- 3) Different types of water resources:
 - Streams, rivers
 - Lakes, reservoirs
 - Groundwater
 - Coastal/estuarian areas
- 5) Different temporal resolutions and time periods:
 - Annual
 - Monthly
 - Daily

Examples of large-scale models

Based on the overview of the World Water Quality Assessment

Modelling protocol for WQ-MIP: 1st draft

- A guide for water quality modelers
- August 2022 workshop

Water Quality Protocol

Working document

Proclias Task Group 3.9: Coordination team

Maryna Strokal (maryna_strokal@wur.nl)

Michelle van Vliet (m.t.h.vanvliet@uu.nl)

Martina Flörke (martina.floerke@hydrology.ruhr-uni-bochum.de)

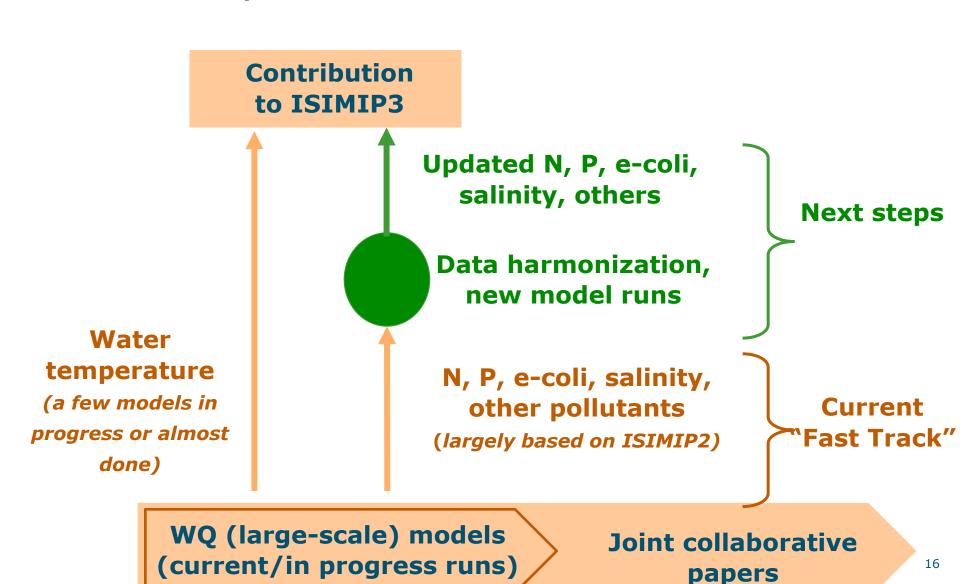
Simon Golsing (Simon.Gosling@nottingham.ac.uk)

Rafael Marcé (rmarce@icra.cat)

Contents

1. Introduction4
1.1 General concept4
1.2 World Water Quality Assessment 4
1.3 Simulation round 4
1.4 Simulation protocol 4
2. Experiments and Scenarios 5
3. Input data 6
3.1 Climate-related forcing 6
3.2 Socioeconomic forcing7
3.3 Hydrology-related forcing8
4. Output data9
4.1 Output dimensions9
4.2 Output variables9
5. Reporting model results

Note


This document is draft. It is not complete. The document aims to start discussions on developing protocol(s) for large-scale water quality models. It follows the template of ISIMIP, but adjusted to water quality.

Modelling protocol for WQ-MIP: 1st draft

- A guide for water quality modelers
- August 2022 workshop
 - Model inputs and outputs
 - Challenges: inconsistencies and harmonization
 - Opportunities:
 - Keep It Simple (KIS approach)
 - Acknowledge inconsistencies
 - Be transparent
 - Everyone should feel welcome to join/contribute
 - The basis to develop the 2nd draft of the protocol

Strategy to build our water quality community within ISIMIP

■ A "Fast track" water quality protocol (2023-2024)

- A "Fast track" water quality protocol (2023-2024)
 - Focuses on better understanding water pollution levels, their hotspots, and sources as well as trends at different temporal and spatial scales

■ A "Fast track" water quality protocol (2023-2024)

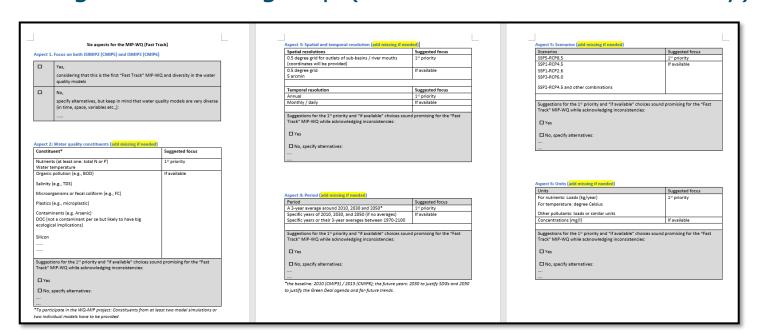
- Focuses on better understanding water pollution levels, their hotspots, and sources as well as trends at different temporal and spatial scales
- Aims to build largely on existing model runs (large flexibility and transiency in inconsistencies)
- Aims to give an opportunity for all water quality modelers to participate who want to contribute their model results
- Example: the WWQA "Fast Track" scenarios (a poster in session 3 tomorrow)

- A "Fast track" water quality protocol (2023-2024)
- Six aspects the basis of today's discussion to make the next steps
 - Aspect 1: ISIMIP2 (CMIP5) and ISMIP3 (CMIP6)
 - Aspect 2: Water quality constituents
 - Aspect 3: Spatial and temporal resolution
 - Aspect 4: Period
 - Aspect 5: Scenarios
 - Aspect 6: Units

- A "Fast track" water quality protocol (2023-2024)
- Six aspects discussion for 35-40 minutes

- A "Fast track" water quality protocol (2023-2024)
- Six aspects discussion
- Instructions: during discussions
 - If you are a water quality modeller: think whether you (or your team) can provide model results using this protocol by February 2024 (either existing runs or re-run your model if you wish when input data become available)

- A "Fast track" water quality protocol (2023-2024)
- Six aspects discussion
- Instructions: during discussions
 - If you are a water quality modeller: think whether you (or your team) can provide model results using this protocol by February 2024 (either existing runs or re-run your model if you wish when input data become available)
 - If you are a (potential) user of model outputs: think weather submitted outputs using this protocol can be useful for your sector (e.g., scales, pollution levels)


- A "Fast track" water quality protocol (2023-2024)
- Six aspects discussion
- Instructions: during discussions
 - If you are a water quality modeller: think whether you (or your team) can provide model results using this protocol by February 2024 (either existing runs or re-run your model if you wish when input data become available)
 - If you are a (potential) user of model outputs: think weather submitted outputs using this protocol can be useful for your sector (e.g., scales, pollution levels)
 - If you are a (potential) provider of model inputs: think if your sector can provide/suggest input data using this protocol for water quality models (e.g., land use, livestock numbers)

- A "Fast track" water quality protocol (2023-2024)
- Six aspects discussion
- Instructions: in groups
 - Look at the six aspects, their 1st priority and "if available" (optional) choices
 - Identify aspects/choices that many of you agree
 - Identify aspects/choices that many of you do not agree and list suggestions for them

Six aspects document

- 3 pages with 6 tables
- For each table:
 - You can (if needed) add missing elements
 - You are asked to indicate "Yes" or "No" if you do not agree
 - If "No", then specify suggestions
- Fill in together as the group (feel free to fill in individually)

Discussion

- People online
 - Chairs and assistants:
 - Six aspects: use the link
- People offline:
 - Chairs and assistants
 - Six aspects: use the printed copy and/or the link
- 16.35 come back to the plenary

Discussion outcomes

- 2-3 main outcomes from discussions
- Chairs:
 - Online: Carolien Kroeze, Michelle van Vliet
 - Offline: Rohini Kumar, Maryna Strokal

Discussion outcomes – Questions 1 & 2

- www.menti.com
- **6861 0468**

Sources of data for model inputs

- Examples of most common model inputs:
 - Socio-economic: e.g., population, income
 - Agricultural: livestock numbers, fertilizers (chemical and organic), land use, soil balances,
 - Urbanization-related: e.g., wastewater treatment, sanitation,
 - Hydrology: e.g., water discharges, runoff
- ISIMIP sectors: e.g., nitrogen synthetic fertilizers, nitrogen deposition, population, land use, water discharges and runoff
- IMAGE (Beusen et al., 2022): nitrogen and phosphorus fertilizers, manure, crop uptake, nitrogen deposition and nitrogen fixation (to be uploaded to ISIMIP)
- Other sources: e.g., van Puijenbroek et al., (2019) on sanitation

Questions

Program 15.30-17.00

15.30-15.50 Introduction to the protocol

15.50-16.45 Discussion

16.45-17.00 Follow-up activities

Ideas for collaborative water quality papers

- www.menti.com
- **1764 0094**

Follow-up activities

- REMINDER: Lake sector -> survey
- This workshop:
 - Session 2 (tomorrow 10.00-11.30): regional modelling
 - Session 3 (tomorrow 13.00-14.00): updates, posters, next steps
- Important dates:
 - August 28th-29th: water quality workshop (finalizing the protocol)
 - **Sept 2023:** Protocol submission to ISIMIP (by coordinators)
 - **Sept 2023-Feb 2024:** Model output submission to ISIMIP (using guides) and online 1-2 meetings
 - March-June 2024: A paper-writing workshop

Thank you

Mirjam Bak

Ilaria Micella

Mengru Wang

Carolien Kroeze

Maryna Strokal

Michelle van Vliet

Simon Gosling

Martina Flörke

Rafael Marcé

Rohini Kumar