Equations for Predicting Carbon Monoxide Emissions from Amazon Rainforest Fires

Sarah Gallup, Bonne Ford, John Gallup, Stijn Naus, Jeffrey R. Pierce

Rainforest emissions benchmark poorly.

FireMIP, % of models whose cell mean is 50% < x < 200% of reference:

0 10 20 30 40 50 60 70 80 90 100

Most fire consequences occur via emissions.

via emissions

via burned area

log response scale

linear response scale

We fitted to 2 Amazon fire CO inventories.

Regressions: one dataset, diverse forms

Accuracy is scored on 3 metrics.

Metric	Meaning
r ²	ability to explain CO differences
ratio of means	overall bias
ratio of explained variance	oversensitivity to predictors

3 uses = 3 equations

Eq. Name:	Linear	Log	LinearPMet
Best use	 Linear-scale emissions Burned area Mixed uses 	- Log-scale emissions	- If meteorology is known
Native time scale	month	month	year

Key predictors: humidity, deforestation rate

#6

Deforested in prior 5 years Deforested in current year Land allocation = secondary forest Potential vegetation, % dry Land allocation = crop or pasture 100 - relative humidity Current precipitation Rain in prior month Days since wetting rain Rain in typically wettest 3 months

The Linear equation's monthly linear r² = 0.18

- If meteorology is known, use it.
- Monthly linear $r^2 \leq .68$.
- Annual accuracy matters for persistent fire effects.
- Log equation is for specialty studies only.

Accuracies can differ markedly by scale.

New r²s are higher than (some?) FireMIP models

Deforestation rate is a valuable rainforest fire predictor.

Which equation is best varies by use.

Deforestation rate is a powerful predictor.

Prediction accuracy for tropical rainforest fire emissions can be improved (burned area tbd).

Comments and questions

sgallup@colostate.edu

Correlation of Naus with GFED for non-zero monthly fire CO

14

Key predictors = humidity, deforestation rate

* Includes lag & cumulative derivatives

Different problems require different diagnostics. blue = accurate predictions; red = predictions with a problem ratio of explained r2 bias of the mean variances ratio ratio of $r^2 = 0.22$ of mear explained variance = 1.49= 2.01 $r^2 = 0.58$ ratio ratio of of means = 1explained variance = 1

У

ப்

У

Even in rainforest, grass is key for burned area.

Predictors in Burned Area Conversion Equations

Burned area r² are rankings similar to emissions r²

r² of Burned Area v. GFED4s

GFED5 with refitted emission conversions ranks similarly.

r² of Burned Area v. GFED5

Sensitivity is steadier for deforestation than for warming or SD(rain).

Experiments, Mean Change in CO

LinearPMet needs more inputs but is more accurate.

LinearPMet needs more inputs but is more accurate.

