

A research institute of the ETH Domain

Comprehensive Expansion: Advancements in Downscaling Algorithms Beyond Temperature and Precipitation for the CHELSA Dataset

Dirk Nikolaus Karger

Swiss Federal Institute for Forest, Snow and Landscape Research WSL

CHELSA – W5E5 variables in ISIMIP

shortname	description	CF Standard Name	levels	frequency
tas	daily-mean near-surface (2 meter) air temperature	air temperature	surface	day
tasmax	daily-maximum near-surface (2 meter) air temperature	air temperature	surface	day
tasmin	daily-minimum near-surface (2 meter) air temperature	air temperature	surface	day
rsds	total downwelling shortwave solar radiation	surface downwelling shortwave flux in air	surface	day
pr	daily precipitation flux (liquid and solid)	precipitation flux	surface	day

CHELSA uses gridded coarse resolution data as input

Wind direction and condensation levels are taken into account

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Scientific Data, 4, 170122, 2017. https://doi.org/10.1038/sdata.2017.122

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Scientific Data, 4, 170122, 2017. https://doi.org/10.1038/sdata.2017.122

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Scientific Data, 4, 170122, 2017.

84

90

92

Principle of the precipitation downscaling in CHELSA

Absolute Bias reduction from coarse to high resolution

without cloud refinement

1 2 3 4 5 10 >15 kg m⁻²day⁻¹

0

Karger, D.N., Wilson, A.M., Mahony, C., Zimmermann, N.E., Jetz, W. (2021) Global daily 1km land surface precipitation based on cloud cover-informed downscaling. *Scientific Data.* doi.org/10.1038/s41597-021-01084-6

Temperature

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, *Scientific Data*, 4, 170122, 2017. https://doi.org/10.1038/sdata.2017.122

Solar radiation

Orographic clouds

Algorithm to downscale cloud cover From atmospheric cloud cover fractions

Function describing distance from cloud base

Windward leeward index

Algorithm to downscale cloud cover From atmospheric cloud cover fractions

Function describing distance from cloud base

Windward leeward index

Algorithm to downscale cloud cover From atmospheric cloud cover fractions

Function describing distance from cloud base

Windward leeward index

Distribute cloud cover based on windwar Leeward position of a pressure level and Its distance to cloud base height

Topographic effects on solar radiation

Solar radiation based on terrain exposition and sun angle

Böhner, J., & Antonic, O. (2009). Land-Surface Parameters Specific to Topo-Climatology. In T. Hengl, & H. I. Reuter (Eds.), GEOMORPHOMETRY: CONCEPTS, SOFTWARE, APPLICATIONS (pp. 195-226). Elsevier Science., in: in T. Hengl, & H. I. Reuter (eds.) Geomorphometry: Concepts, Software, Applications, Elsevier Science, 195–226, 2009.

- Clear sky conditions
- Direct and diffuse radiation

Solar radiation based on Terrain exposition and sun angle

(a)

First approximation

Combine with cloud cover To get total incoming solar radiation at surface

(b)

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603

(e)

Philipp Brun

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Cloud cover based on maximal overlap assumption

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Problems with cloud cover

- No convection included
- Still huge biases in the forcing data (e.g. ERA5) compared to observations -> maybe a bias correction of the ERA5 data is needed

Algorithm to downscale relative humity (*hurs*) from atmospheric humidity (*hur*) on pressure levels

Spline interpolation between *hur* and altitude

Windward leeward index

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Algorithm to downscale relative humity (*hurs*) from atmospheric humidity (hur) on pressure levels

Spline interpolation between hur and altitude

Windward leeward index

hurs
$$= \frac{1}{(1 + \exp(-1 \cdot h))},$$

with
$$h = \frac{h_t \cdot (H + (H_c - H)(1 - H_c))}{H_c}$$

and h_t being the logit-transformed version of hurs_{orog}:

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Algorithm to downscale wind speed at pressure levels to surface wind speed (*sfcWind*)

Spline interpolation between seperatly for wind components (*u*, *v*)

Combine wind vectors at high resolution to wind speed

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

CHELSA – variables

shortname	description	CF Standard Name	levels	frequency
tas	daily-mean near-surface (2 meter) air temperature	air temperature	surface	day
tasmax	daily-maximum near-surface (2 meter) air temperature	air temperature	surface	day
tasmin	daily-minimum near-surface (2 meter) air temperature	air temperature	surface	day
rsds	total downwelling shortwave solar radiation	surface downwelling shortwave flux in air	surface	day
rlds	total downwelling longwave solar radiation	surface downwelling longwave flux in air	surface	day
hurs	daily-mean near-surface (2 meter) relative humidity	relative humidity	surface	day
pr	daily precipitation flux (liquid and solid)	precipitation flux	surface	day
ps	daily mean near-surface (2 meter) air pressure	surface air pressure	surface	day
clt	surface total cloud area fraction	cloud area fraction	surface	day
tz	near surface temperature lapse rate	-	surface	day
sfcWind	daily-mean 10m wind speed	wind speed	surface	day

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Correlations with observations high for:

vpd pet cmi

lower for: clt sfcWind hurs

Good news: Low error propagation !

Brun, P., Zimmermann, N.E., Hari, C., Pellisier, L., Karger, D.N. (2022) Global climate-related predictors at kilometer resolution for the past and future, Earth System Science Data 14, 5573–5603 https://doi.org/10.5194/essd-14-5573-2022

Where are we going with this?

- Monthly versions are online
- Daily version is in production (delayed due to CDS server switch)
- R package to access data on gitlabext.wsl.ch (beta version)
- Aim is: to produce a comprehensive dataset for 1940-today
- No CMIP planned yet (storage and compute problems)

Acknowledgements

Funders & Partner institutions

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo nazionale svizzerdo Swiss National Science Foundation

 \cap POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH

Thanks....

Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 07.06.2024

Bias compared to stations In the continental United States over 2003-2016.

PRISM has lowest bias

- Only available in US
- Uses most of these stations

CHELSA, MSWEP, CHIRPS have moderate biases

WorldClim has large bias

 Version using CRU TS stations used here

MSWEP

WorldClim

CHELSA_EarthEnv

CHIRPS

Karger, D.N., Wilson, A.M., Mahony, C., Zimmermann, N.E., Jetz, W. (2021) Global daily 1km land surface precipitation based on cloud cover-informed downscaling. *Scientific Data.* doi.org/10.1038/s41597-021-01084-6

Global climate model data is usually to coarse for most ecological applications

Only a few models (e.g. ICON) are currently able to run at kilometer scale globally

They are computationally extremly intensive

Run over short time periods only

Extremly large amount of data

Not available for years to come

