

ISIMIP biome sector overview

Jinfeng Chang, Christopher Reyer, and ISIMIP biome sector contributors

ISIMIP Workshop, 23rd April 2024

Biome sector: biogeochemical cycles of terrestrial ecosystem

Source: ORCHIDEE development group at IPSL

Contributing sectors: Agriculture **Terrestrial biodiversity Biome** Fire Peatland Permafrost Water (global)

...

ISIMIP Biome sector: Past achievements and advantages

- ISIMIP Fast Track: 7 models. Comparing projections of climate change impacts from global models
- ISIMIP2a: 8 models. Evaluation + Extreme events and variability
- ISIMIP2b: 8 models. Assessing the impacts of 1.5 °C global warming
- ISIMIP3a: 16 models. Evaluation + Detection and attribution of observed impacts
- ISIMIP3b: **??** models. Quantification of climate-related risks at different levels of climate change and direct human forcing
- ISIMIP4: Planned in this workshop

Advantages

- Future scenarios with changing land-use etc.
- PFT specific outputs and those are being used, e.g. to derive forest outputs for the Guo et al. paper
- ISIMIP3 has added many sectors (e.g., fire, peat) that are close to biomes and have overlap for key topics and outputs, biodiversity is still a key sector to cooperate with but needs further pushes

ISIMIP Fast Track

- Objectives: "comparing projections of climate change impacts from global models".
- Forcings and Scenarios: 5 GCMs from CMIP5: GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MIROC-ESM-CHEM; NorESM1-M

	GCMs	RCPs (clim- scenario)	Other settings (sens-scenario)	# runs
Minimal setting: GCM1, all RCPs; sensitivity	GCM 1	2.6 (rcp2p6) 4.5 (rcp4p5) 6.0 (rcp6p0) 8.5 (rcp8p5)	co2	4
experiment; GCM 2-5, BCP8 5 + 2.6	GCM 1	8.5 (rcp8p5)	noco2	1
NCP0.3 + 2.0	GCM 2- 5	2.6 (rcp2p6) 8.5 (rcp8p5)	co2	8

IMPORTANT: For all scenarios in this section, no human land-use is to be assumed.

- Land use: not prescribed
- 7 Biome models: Hybrid, JeDi, JULES (water), LPJmL(water): Dynamic vegetation ORCHIDEE, SDGVM, VISIT: Prescribed vegetation (1850)

ISIMIP Fast Track Publications

- Friend et al., Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. PNAS, 2013
 NPP, cVeg
- Ito *et al.*, Impacts of future climate change on the **carbon budget** of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data. *Polar Science*, 2016.
- Nishina *et al.*, Quantifying uncertainties in **soil carbon** responses to changes in global mean temperature and precipitation. *Earth System Dynamics*, 2014.
 - cSoil, cVeg

NPP. cVeg. cSoil

- Nishina et al., Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, 2015.
 NPP, cSoil, cVeg
- Thurner *et al.*, Evaluation of climate-related **carbon turnover processes** in global vegetation models for boreal and temperate forests. *Global Change Biology*, 2017.
 NPP, cVeg
- Cross-sectoral analysis:

Warszawski *et al.*, A multi-model analysis of **risk of ecosystem shifts** under climate change. *Enivron. Res. Lett.*, 2013 NPP, Rh, fFire, cSoil, cVeg, trans, evap, qtot, soil

moisture, PFT coverage

rr, coui,

ISIMIP2a

- Objectives: "Extreme events and variability " "evaluating the models' ability to reproduce observed historical variability, responses to extreme climatic events such as heat waves, droughts, floods, heavy rains and storms, and representation of extreme impact events"
- Forcings : 4 reconstructed historical climate forcing datasets (PGFv2, GSWP3, WATCH, WFDEI)
- Land use: HYDE3 + MIRCA

	Climate Data	Scenario	Population/GDP	Land use (LU)	Other settings (sens-	#
					scenario)	runs
torical	PGMFD v.2	hist	varsoc (see Table 18 ; if varsoc not	Hyde3 + MIRCA (no LU	historical CO2 (co2)	1
ns	(Princeton)		possible, please submit the presoc run)	specifier)		
	GSWP3	hist	varsoc	Hyde3 + MIRCA (no LU	historical CO2 (co2)	1
				specifier)		
	WATCH (WFD)	hist	varsoc	Hyde3 + MIRCA (no LU	historical CO2 (co2)	1
				specifier)		
	WATCH+WFDEI.GPCC	hist	varsoc	Hyde3 + MIRCA (no LU	historical CO2 (co2)	1
				specifier)		

Table 19 Experiment summary for Biomes models

 8 Biome models: CARAIB, DLEM, JULES (water), LPJ-GUESS, LPJmL (water), ORCHIDEE (water), VEGAS, VISIT

ISIMIP2a Publications

٠

Environmental Research Letters special issue

- Chen *et al.*, Regional contribution to variability and trends of global **gross primary productivity**. 2017. •
- Ito *et al.*, **Photosynthetic productivity** and its efficiencies in ISIMIP2a biome models: benchmarking for impact ٠ assessment studies. 2017
- García Cantú *et al.*, Evaluating changes of biomass in global vegetation models: the role of **turnover fluctuations** • and ENSO events. 2018. NPP, cVeg
- Chang et al., Benchmarking carbon fluxes of the ISIMIP2a biome models. 2017. •

NBP (including LUC) Wartenburger et al., Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets, 2018

- Pan S et al., Climate extreme versus carbon extreme: responses of terrestrial carbon fluxes to temperature and ٠ precipitation, JGR-Biogeosciences, 2020 NPP, Rh, NEP
- **Cross-sectoral analysis**: Schewe *et al.*, State-of-the-art models underestimate impacts from **climate extremes**. • Nature communications, 2019 **GPP**

Evapotranspiration

GPP

GPP

	GPP	NPP	NBP	Biomass turnover
Global mean	well captured [2,3]	-	well captured [1]	-
Trends	not consistently captured [2]	-	not consistently captured [1]	-
Spatial pattern	well captured [2]	-	-	-
Seasonality	not consistently captured [2, 3]	-	-	-
Inter-annual variation	not consistently captured [2,3]	-	well captured [1]	-
ENSO	not consistently captured [3]	-	well captured [1]	not consistently captured [4]
Large volcanic eruption	not consistently captured [3]	-	-	-
Drought	magnitude not captured [5]	-	-	-
Extreme		well captured for T but not P [6]		

[1] Chang et al., 2017 [2] Chen et al., 2017 [3] Ito et al., 2017 [4] Carcia Cantu et al., 2018 [5] Schewe et al., 2019 [6] Pan et al., 2020

These findings imply that we need to improve i) parameterization of GPP in terms of seasonality [2] and radiation responsiveness [3], ii) heat and water stress effects on plants [5,6], ii) vegetation carbon turnover [4], and iii) the sensitivity of NPP and NBP to tropical temperature and precipitation variations [1,6].

ISIMIP2b

- Objectives: "Assessing the impacts of 1.5 °C global warming"
- Forcings and Scenarios: 4 bias-corrected GCM climate, IPSL-CM5A-LR; GFDL-ESM2M; MIROC5; HadGEM2-ES.
- Land use: historical (HYDE3 + MIRCA) and future (SSP2 rcp26/rcp60 from MAgPIE)

Effects of land use change on C budget (mainly deforestation/reforestation)

• 8 Biome models: CARAIB, CLM4.5 (water), DLEM, LPJ-GUESS, LPJmL (water), ORCHIDEE-MICT (water), VEGAS, VISIT

ISIMIP2b Publications

- Ito et al. Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems, Environmental Research Letters 2020
 NPP, CVeg, CSoil
- Shi et al., Saturation of Global Terrestrial Carbon Sink Under a High Warming Scenario, Global Biogeochemical Cycles 2020
 GPP, NBP
- Xu et al., Reducing Uncertainties of Future Global Soil Carbon Responses to Climate and Land Use Change With Emergent Constraints, Global Biogeochemical Cycles 2020
 NPP, SOC
- Gaedeke *et al.*, Climate change reduces winter overland travel across the Pan-Arctic even under low-end global warming scenarios, *Environmental Research Letters* 2021 (Permafrost) TSoil, Snow depth
- Cross-sectoral analysis: Lange et al., Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales, *Earth's Future* 2020 (Fire) Wildfire
- Thiery et al., Intergenerational inequities in exposure to climate extremes

Wildfire

- Guo et al., Forest product demand and supply in a bioeconomy transition: the possible role of wood in the context of climate change mitigation, in prep.
 NPP
- Hickler *et al.*, Impacts of climate and land use change on biogeographic range shifts, in prep.

ISIMIP3a

- Objectives: "i) impact model evaluation and improvement and ii) detection and attribution of observed impacts according to the framework of IPCC AR5 Working Group II Chapter 18"
- Forcings and Scenarios: GSWP3-W5E5, 20CRv3-W5E5, 20CRv3-ERA5, 20CRv3 historical + counterfactual

histsoc

- Land use: historical (HYDE3 + MIRCA)
- 16 Biome models

ISIMIP3a biomes forestry

a curta at			
contact			
Louis Francois			
Sian Kou-Giesbrecht			
Wim Thiery			
Hanqin Tian/ Hao Shi			
Eleanor Burke			
Matthew Forrest. Thomas Hickler			
Lars Nieradzik			
Sebastian Ostberg			
Zhen Zhang, Ben Poulter			
Jinfeng Chang			
Fang Zhao			
Akihiko Ito			
Qing Zhu, Bill Riley			
John Kim			
Huilin Huang			
ENTER NEW MODEL HERE>			

ISIMIP3b

- Objectives: "quantification of climate-related risks at different levels of climate change and direct human forcing"
- Forcings and Scenarios: 3-5 SSPs (SSP126, 370, 585, and more), 5 GCMs
- Land use: historical (HYDE3 + MIRCA) and future (SSP126, 370, 585 from MAgPIE, IMAGE, GLOBIOM)
- 16 and more?? Biome models

Model	contact	
CARAIB	Louis Francois	
CLASSIC	Sian Kou-Giesbrecht	
CLM5.0	Wim Thiery	
DLEM	Hanqin Tian/ Hao Shi	
JULES-ES-VN6P3		
JULES	Eleanor Burke	
LPJ-GUESS-Spitfire	Matthew Forrest. Thomas Hickler	
LPJ-GUESS-Simfireblaze	Lars Nieradzik	
LPJmL	Sebastian Ostberg	
LPJ-wsl	Zhen Zhang, Ben Poulter	
ORCHIDEE-MICT	Jinfeng Chang	
VEGAS	Fang Zhao	
VISIT	Akihiko Ito	
ELM-ECA	Qing Zhu, Bill Riley	
MC2-USFS-r87g5c1	John Kim	
SSiB4/TRIFFID	Huilin Huang	
<enter here="" model="" new=""></enter>		

Input	Status
Climate	All ready
Land use	Will be ready soon for SSP126, SSP370, SSP585
Population (Fire)	SSP1 ready
N fertilization & deposition	Ready; NCAR CCMI 1850-2100; will be in the protocol

ISIMIP3a/3b Status & Planned Publications

- 3a: 8 Model uploaded (CLASSIC, DLEM, JULES-ES-VN6P3, ORCHIDEE-MICT, VISIT, ELM-ECA, MC2-USFS-r87g5c1, SSib4/TRIFFID), 4 Models ready (CARAIB, LPJ-GUESS-SPITFIRE, LPJ-GUESS-Simfireblaze, LPJmL)
- 3b: 5 Models uploaded/ready (CLASSIC, DLEM, LPJmL, ORCHIDEE-MICT, VISIT)

Title	Lead author team	List of Variables
Dynamics of permafrost soil carbon from a few LSMs (including 3a and 3b output).	Jinfeng Chang	cveg, csoil, etc.
Carbon-nutrient interactions during future permafrost thaws	Qing Zhu	Tsoil, soilmoist, cveg, csoil, nveg, nsoil
Benchmarking of ISIMIP3a outputs by biome models focusing on global carbon cycle	Akihiko Ito	cveg-total, clittre-total, csoil-total, npp- total, lai-total
Global nitrogen cycling in historical and future simulations	Sian Kou-Giesbrecht	nitrogen pools and nitrogen fluxes
RECCAP2 carbon budget historical and future constrainted by reanalysis	Eleanor Burke	carbon budget
Benchmarking of ISIMIP3a permafrost outputs over Qinghai-Tibetan plateau	Jinfeng Chang	Tsoil, soilmoistat each level (profile), altmax, cnpveg, cnpsoil
Cross-sectoral 3b paper	Karim Zantout/ Jacob Schewe	BurntArea 13

Gaps and potential integrations (beyond vegetation)

Progress

- Carbon -> Carbon & Nitrogen & Phosphorus
- Vegetation types + Permafrost & Peatland & Fire

Gaps

- Vegetation and soil carbon turnover
- Response to future extremes like drought
- Terrestrial Carbon & Nitrogen & Phosphorus risks under climate change
- Uncertainty in the land-use patterns
- Forest management and better representing forestry
- Extreme disturbances such as storms, fire, insects at large scale and not background mortality Integrations
- Biome-Fire-Permafrost-Peatland
- Biome-Water
- Biome-forestry
- Biome-biodiversity

Thank you!