HELMHOLTZ MUNICI)

Assessing the effectiveness of the heat health warning system in preventing mortality in 15 German cities: a difference-in-differences approach

Hanna Feldbusch, Alexandra Schneider, Franziska Matthies-Wiesler, Annette Peters, Susanne Breitner-Busch, <u>Veronika Huber</u>

ISIMIP/PROCLIAS Meeting, Potsdam, 24.-26. April 2024

Background: Heat-related excess mortality in Germany

Huber et al. 2024 Deutsches Ärzteblatt 2

Background: The German heat health warning system

Administered by the German National Weather Service (DWD)

Matzarakis et al. 2020 atmosphere

Background: Heat alerts issued in German cities since 2005

Matzarakis et al. 2020 *atmosphere*

Background: Limited knowledge on the effectiveness of heat alerts in preventing mortality

Z Gerontol Geriat 2014 - 47:475–482 DOI 10.1007/s00391-014-0673-2 Published online: 26. Juli 2014 © Springer-Verlag Berlin Heidelberg 2014

Beiträge zum Themenschwerpunkt

U. Heudorf · M. Schade Amt für Gesundheit, Frankfurt am Main

Heat waves and mortality in Frankfurt am Main, Germany, 2003–2013

What effect do heat-health action plans and the heat warning system have?

1) So far no systematic assessment of the effectiveness of the heat health warning system in Germany

Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint

Environment International 116 (2018) 30-38

Effectiveness of National Weather Service heat alerts in preventing mortality in 20 US cities

Kate R. Weinberger^{a,b,*}, Antonella Zanobetti^c, Joel Schwartz^{c,d}, Gregory A. Wellenius^a ^a Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA

Research

A Section 508–conformant HTML version of this article is available at http://dx.doi.org/10.1289/EHP203.

A Difference-in-Differences Approach to Assess the Effect of a Heat Action Plan on Heat-Related Mortality, and Differences in Effectiveness According to Sex, Age, and Socioeconomic Status (Montreal, Quebec)

Tarik Benmarhnia,¹ Zinzi Bailey,¹ David Kaiser,² Nathalie Auger,³ Nicholas King,^{4,5} and Jay S. Kaufman^{1,5}

¹Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada; ²Direction de santé publique de l'Agence de la santé et des services sociaux de Montréal, Montréal, Québec, Canada; ³Institut National de Santé Publique du Québec, Montréal, Québec, Canada; ⁴Biomedical Ethics Unit, and ⁵Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada

2) Overall, few studies using quasiexperimental method such as difference-in-differences approaches

Study objectives

Two major objectives:

1) To examine if the heat alerts issued by the German National Weather Service have prevented all-cause mortality during hot days in the 15 most populated German cities

2) To pool the city-specific effect estimates and to assess the heterogeneity among cities based on city-specific socioeconomic, demographic and environmental factors

6

Overview of data and methods

Study period: Warm-season months (May-Sep) in 1993-2020

Data: Daily death counts in 15 German cities, linked with heat alert data and meteorological variables; annual data on socioeconomic, demographic and environmental characteristics

First stage: Estimation of the city-specific effects of heat alerts on mortality using a difference-in-differences (DID) approach

Second stage: Estimation of the pooled overall effect by fitting meta regression models and identification of city-specific factors explaining heterogeneity

Feldbusch et al. in prep.

Difference-in-differences (DID) approach

https://diff.healthpolicydatascience.org/

Intervention: Implementation of the heat health warning system in 2005.

- \rightarrow Pre-intervention period: 1993-2004
- \rightarrow Post-intervention period: 2005-2020

Outcome: Daily death counts

Treated: Days "eligible" for heat alerts (hot days)

Control: Days "non-eligible" for heat alerts (non-hot days)

Days in the pre-intervention period categorized as "eligible"/"non-eligible" using **random forest classification**

First-stage quasi-Poisson regression models

 $log(E(D_{t,i})) = \beta_0 + \beta_1 H_{t,i} + \beta_2 P_{t,i} + \beta_3 H_{t,i} * P_{t,i}$ + weekday + seasonal and longterm trends + climatic covariates $+ population of fset + \varepsilon_{t,i}$

 $D_{t,i}$: Total death count on day t, in city i

 $H_{t,i}$: Binary indicator for "eligible" (hot) and "non-eligible" (non-hot) days

 $P_{t,i}$: Binary indicator for pre-intervention (without heat alerts) and post-intervention (with heat alerts)

DID estimate reported as relative risk: $RR = \exp(\beta_3)$;

RR < 1: protective effect of heat alerts $RR \ge 1$: no protective effect of heat alerts

City-specific results

Feldbusch et al. in prep.

Results of mixed-effect meta-regression

Basic and final multi-parameter models based on city-specific DID estimators for "all cities" and the seven cities fulfilling the DID parallel trend assumption ("selected cities")

Model	Coefficient	Estimate	95% CI	p-Value	 2	AIC	BIC
Basic model (all cities)	(Intercept)	- 0.83 × 10 ⁻²	[-2.78 × 10 ⁻² , 1.13 × 10 ⁻²]	0.41	35.24%	- 50.46	- 49.04
Final model (all cities)	(Intercept)**	- 1.62 × 10 ⁻¹	[-2.89 × 10 ⁻¹ , -0.35 × 10 ⁻¹]	< 0.05	0.00%	- 57.40	- 53.86
	Recreational area	3.27 × 10 ⁻³	[1.14 × 10 ⁻³ , 5.40 × 10 ⁻³]	< 0.01			
	Population	- 2.62 × 10 ⁻⁸	[-4.62 × 10 ⁻⁸ , -0.63 × 10 ⁻⁸]	< 0.01			
	Population density	2.41 × 10 ⁻⁵	$[-0.14 \times 10^{-5}, 4.95 \times 10^{-5}]$	0.06			
Basic model (selected cities)	(Intercept)	0.18 × 10 ⁻²	[-2.69 × 10 ⁻² , 3.06 × 10 ⁻²]	0.90	43.18%	- 20.29	- 20.40
Final model (selected cities)	(Intercept)**	- 1.10 10 ⁻¹	[- 2.09 × 10 ⁻¹ , - 0.12 × 10 ⁻¹]	< 0.05	0.00%	- 23.98	- 24.20
	Water area	1.78 × 10 ⁻²	$[0.54 \times 10^{-2} , 3.01 \times 10^{-2}]$	< 0.01			
	Population	0.66 × 10 ⁻⁷	[-0.16 × 10 ⁻⁷ , 1.48 × 10 ⁻⁷]	0.12			

11

Conclusions

- Large **heterogeneity** in the **effectiveness of heat alerts** in preventing mortality across cities.
- DID estimates suggest that heat alerts have **reduced mortality during hot days** only in **six of the fifteen German cities** studied.
- The pooled DID estimate points to a small to no protective effect of heat alerts for the ensemble of studied cities.
- The effectiveness of heat alerts may be influenced by city-specific characteristics such as population size, and the presence of blue and green spaces, highlighting the need for tailored heat health warning approaches.

Future research building upon PROCLIAS

In many European countries, data on issued heat alerts is readily available.

This data could be combined with mortality data from the Multi-Country Multi-City (MCC) network.

Expanding the geographical scope of the presented approach might improve statistical power and allow for more robust conclusions on the effectiveness of heat alerts in preventing mortality.

Urban et al. *in prep*.

Thank you for your attention

veronika.huber@ibe.med.uni-muenchen.de twitter: @hubervroni

DID parallel trend assumption

- Relevant period: 1993 to 2004 (before implementation of heat alerts)
- Assumption: Parallel trends in the group of "eligible" and "non-eligible" days

Scatterplot and linear trendline for daily death counts by city in the pre- and postintervention periods (before and after the implementation of heat alerts)

Sensitivity analyses

	Main F	Result	S														
Main Model (MM)		1					-							_			
Random Forest Classification	Other	(Non-) Eligible Days I	Defini	tion						1	1					
Study Period (2002-2007)	Other	Study	/ Period			•					<u> </u>	_					
Study Period (2000-2009) Study Period (1995-2014) Excluded Years (1994, 2003, 2006, 2015, 2018, 2019)			-			_	_		•	0							
Excluded Year (1994) Excluded Year (2003) Excluded Year (2006) Excluded Year (2015)		1 1 1 1 1 1 1							•	•	0	-					
Excluded Year (2013) Excluded Year (2018) Excluded Year (2019)		1 1 1 1 1						_	•					_			
	Quasi	-Poiss	son Model Modi	ficatio	ons												
Basic DID Model (BM) BM + Temporal Patterns (TP)		1 1 1 1								•				_			
BM + TP + Relative Humidity (RH) + Tmax BM + TP + RH + lag3(Tmean) MM without offset		1 1 1 1 1 1															
MM + population \geq 65 + life expectancy																	
	Restri	ction	to Non-Eligible	Days													
(Tmin \ge 9°C, Tmean \ge 15°C, Tmax \ge 17.3°C, RH \ge 29.92%)		1					-			•	0			_			
	0.	55	0.60		0.65	0.70	0.75	^{0.80} Relativ	0.8 e Risk/	85 0).90	0.95	1.00	1.05	1.10	1.15	1.20
			Legend	•	Selected Ci	ties (Predicted)	Sele	cted Cities	(Intercept	t) • All	Cities (F	Predicted)	• A	Il Cities (In	ercept)		

Second-stage mixed-effect meta-regression

Main model:

City-specific DID estimates (β_3) = socioeconomic, demographic and environmental factors as fixed effects + city-level random effects

- Stepwise selection of fixed-effect meta-variables based on Akaike Information Criterion (AIC)
- Pooled DID estimates predicted based on city-average of selected meta-variables
- Meta-regression done for all 15 cities ("All cities") and group of 7 cities fullfilling DID parallel trend assumption ("Selected cities")