Reconciling climate-smart festry in
Europe with constraints on forest
protection and timber demand
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Background: numerous demands

Timber provision

Carbon sink

Local climate regulation

Water cycling

Provision of habitat for biodiversity
Non-wood products



Background: climate-smart forestry
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(SFM, Bowditch et al., 2020; Santopuoli et al., 2021). CSF is composed of
three main pillars: 1) increasing the mitigation potentil of forests, 2)
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to climate change and 3) ensuring the sustainable
(Nabuurs et al., 2018).
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Methods: Factorial simulation experiment to
quantify the drivers of forest-based mitigation
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Table 1 The considered values of the factors used in this study

Values Comment

Factor

Climate change and N deposition  RCP2.6, RCP4.5, RCP8.5 See Fig. 1

Disturbance probability change (%) Constant, linear, exponential Changes in disturbance frequency based on temperature anomaly (Additional file 1:
Fig.S1)

Forest age Mature, young Planted between 1921 and 1940, or between 1981 and 2000, respectively (Addi-
tional file 1: Fig. 52)

Forest type BD, NE Broad-leaved deciduous, needle-leaved evergreen forests

Harvest intensity (0%, 50%, 100%, 150% Direct change in harvest intensity starting after 2020 compared to current values

Salvage logging Yes, no After every disturbance after 2020

Material wood usage 100%, 150% The increase to 150% was implemented as a linear change from 2020 until 2050

at the expense of short-lived products and firewood

Cascade usage 100%, 150% The change to 150% was implemented as a direct change of the lifetime of prod-
ucts created after 2020

Decarbonization in 2050 25%%, 50%, 75% Exponential decrease based on [44], reaching the given percentage value in 2050
(Additional file 1: Fig. S5)

All possible combinations were simulated, leadingto3 x 3 x 2 x 2 x 4 x 2 x 2 x 2 x 3 = 3456 simulations

(*) Note that we used the exponential increase as the default in our analyses unless stated otherwise



Results: Factorial simulation experiment to
quantify the drivers of forest-based mitigation
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Results: Factorial simulation experiment to
quantify the drivers of forest-based mitigation
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Results: Factorial simulation experiment to
quantify the drivers of forest-based mitigation
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Methods: robust multi-criteria optimization for
climate-smart forestry under uncertainty
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Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty

Southern Sweden (13.75, 55.75)
a) ESl Performance 2100-2130 (indiv. management)

b) ESI Performance 2100-2130 (optimized portfolio) ¢€) Optimized Portfolio Shares
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Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty

Southern Sweden (13.75, 55.75)
a) ESl Performance 2100-2130 (indiv. management) b) ESI Performance 2100-2130 (optimized portfolio) ¢€) Optimized Portfolio Shares
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Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty

Southern Sweden (13.75, 55.75)
a) Esl Performance 2J/00-§ 30 (indiv. management)

b) ESI Performance 2100-2130 (optimized portfolio) ¢€) Optimized Portfolio Shares
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Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty

Optimal Portfolio Present Day Share NL/BL  Future Share NL/BL
T

o tCoppice
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Species Shares
Il Total Share Needleleaved .
¥% Total Share Broadleaved (BE & BD)




Background: constraints

EU LULUCF targets
— EU forests shall be a sink of 310 MtCO./yr

EU Biodiversity Strategy
- Protect 30% of EU land area
— Strictly protect 10% of EU land area

EU Forest Strategy
- Enhance usage of wood for long-term purposes

Wood demands are increasing



Methods: robust multi-criteria optimization for
climate-smart forestry under uncertainty and constraints

e Enforce stable harvest levels
e Enforce strict protection on 10% of land area
e “Hard constraints”’”: must be met under all scenarios



Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty and constraints

Southern Finland (61.75°N, 23.75°E)
a) ESI Performance 2100-2130 b) ESI Performance 2100-2130 d) ESI Performance 2100-2130 e) all-constraints portfolio

(indiv. management) (default-opt) (all-constraints)
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Results: robust multi-criteria optimization for
climate-smart forestry under uncertainty and constraints

a) Europe Total, n=179

* Afocus on timber provision is

required in productive regions to _ Ill
maintain present-day harvest levels

d) Northe
while also strictly protecting 10% of i —H
land area _n HHH
* “unfair” distribution of protection n.ﬂ.{/ L ey
areas .WI - WA
 Productive areas rarely selected for - - = “-HH ~
protection (although some species 3 L )
require productive sites) Y o N Y o
g . 3

Gregor et al. (in revision)
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