Ecosystem Dynamics in Arid Conditions: Evaluating iLand Model in Spanish Pine Forests

Agnish Kumar Das*, Katarína Merganičová, Laura Dobor, Marco Baldo, Tomáš Hlásny, Jordi Martinez-Vilalta, Werner Rammer.

Background

Drought severity based on SPI- 12 and SPEI- 12 (2071-2100 vs 1981-2010) under RCP 4.5 and RCP 8.5 (Vogt et al. 2018*)

Background

Localities with increased forest mortality related to climatic stress from drought and high temperatures

Allen, 2009*; FAO, 2009

*Allen, C. D. (2009). Climate-induced forest dieback: an escalating global phenomenon. Unasylva, 231(232), 60.

What can ecological modelers do?

- Test models' capacity to simulate ecosystem dynamics in emerging drought-sensitive conditions.
- Address the gaps in the models for more accurate and realistic simulation outputs.

What did we do?

- Employed the individual-based climatically sensitive process-based model, iLand (Seidl et al. 2012*) on drought-affected forest plots.
- To examine model ´s ability to capture the impact of arid conditions on ecosystem dynamics we analysed the simulated (a) productivity and (b) mortality.

Where was the model used?

- 55 *Pinus sylvestris* (Scots pine) stands in Spain across elevation gradient of 645-1364m a.s.l.
- Stands experienced drought-induced forest mortality between 2007- 2015.
- Five simulation sites were designed from the 55 Scots pine stands for the study.

Experimental and simulation design

- Daily climate time series from 2007-2015 used.
- Initial stand conditions of 2007 used to initialize the simulations.
- Simulations with the iLand model for 9 years to allow comparisons between simulated and observed outputs.
- Productivity calculated in terms of total volume production during the simulated period.
- Mortality calculated in terms of the percentage volume of trees which died during the simulated period.
- Statistical models to observe consistency between simulated and observed outputs.
- Statistical models to analyze the consistency in drivers of simulated and observed outputs.

Productivity dynamics

Mortality dynamics

Blue: Simulated mortality Red: Observed mortality

Observed mortality was strongly and positively associated with climatic conditions (daily maximum temperature, daily vapour pressure deficit).

Simulated mortality positively associated with the initial stand density.

Mortality dynamics

Observed and Simulated Mortality

Green: Line depicting 1:1 relationship

- The model overestimated the mortality during the period of 2007-2015.
- Very weak association was observed between the Simulated and Observed Mortality.

Key messages

The simulated productivity dynamics across space was consistent with the observations.

The simulated mortality is driven by different factors than the observed mortality. 3

Model simulates forest growth well outside the parametrization domain; mortality should however be interpreted carefully.

Testing the model performance at more drought-affected plots.

Way forward

Comparing multiple model performances at droughtaffected plots.

Simulating future dynamics of the drought-affected plots under various scenarios of climate change.

Thank You