Are children disproportionately exposed to attributable heatwaves?

Rosa Pietroiusti, Erich Fischer, Rupert Stuart-Smith, Luke Harrington, Luke Grant, Annalisa Savaresi, Sam Adelman, Wim Thiery Children will be disproportionately exposed to climate extremes because they will live into the future

IPCC AR6 SYR Fig. SPM.1 (2023

But are **children** already disproportionately exposed to attributable extremes **today**?

Previous studies show attributable hot days clustered in low-latitude low-income countries...

present-day vs. pre-industrial (TX99)

...These are also countries where a large part of the population is young

Relevance? Children are...

- Considered a vulnerable category in social sciences, disaster risk reduction, health, law
- Powerful spokespeople for the rights of future generations
- Less responsible for historical emissions

Are children disproportionately exposed to attributable heat stress?

- Fixed magnitude threshold WBGT 28°C
- Frequency change between pre-industrial and present-day warming
- Quantify additional (attributable) number of days per year

Number of days per year crossing WBGT 28°C in pre-industrial (1850-1900) and at present-day warming (CanESM5)

Climate data

- CMIP6-ISIMIP3b GCMs
- Change in threshold exceedance frequency and intensity

Number of additional days $nAHD = n_{days} * (p1 - p0)$

Probability ratio PR = p1/p0

Demographic data

Gridded population 1850-2100 (ISIMIP)

Number of people in each age cohort experiencing at least 20 attributable hot-humid days per year crossing WBGT 28°C (multi-model mean and

- 0-9 year olds: 750 (670-820) million people
- 60-69 year olds: 250 (210-270) million people

But there are more 0-9 y.o. than 60-69 y.o. in the world... What about the **proportion of the age group**?

Proportion of age cohort experiencing at least 20 attributable hot-humid days per year crossing WBGT 28°C (multi-model mean and range)

- 0-9 year olds: 62% (56-68%)
- 60-69 year olds: 43% (37-48%)

How many attributable hot-humid days per year are different age groups experiencing on average per capita?

Number of **attributable hot-humid days per year** crossing WBGT 28°C experienced by an average member of each age group (median and IQR)

- 0-9 year olds: 45 days (40 46 days) per year
- 60-69 year olds: 29 days (27 30 days) pear year

Pattern holds for **different definitions** of hot and hot-humid extremes

TX99

Number of people experiencing **at least 10 attributable hot days per year** crossing TX99

0-9 year olds: 620 (520-750) million people 60-69 year olds: 200 (155-240) million people

Proportion of age group experiencing **at least 10 attributable hot days per year** crossing TX99

0-9 year olds: 51% (43-62%) 60-69 year olds: 35% (27-43%)

Average number of **hot days per year** crossing TX99 experienced **per capita** per age goup **0-9 year olds: 14 (14-17) days**

60-69 year olds: 11 (10-12) days

Pattern holds for **different definitions** of hot and hot-humid extremes

- WBGT 28°C, 30°C, 33°C
- 99th percentile of WBGT in pre-industrial
- TX90, TX95, TX99

What about **changes in intensity** of a fixed percentile?

12

Key takeaways & implications

- At a global level, children disproportionately exposed to attributable increase in frequency of hot(-humid) extremes
- **Demographic patterns** of young populations in low-latitude countries overlapping with **higher attributability**
- Adds additional dimension of age to disproportionality of responsibility versus exposure/impacts of climate change today

Outlook

- Develop attributability framework
 - Observational line of evidence
 - Model evaluation & synthesis
 - Non-stationary distribution GMST covariate
- Regional and country-level analysis
 - GDP, vulnerability indices, national historical emissions
- Need for child-specific research
 - Metrics relevant for e.g. health and educational impacts
 - Child-specific vulnerability
 - Impact attribution

Thank you!

Rosa Pietroiusti, Erich Fischer, Rupert Stuart-Smith, Luke Harrington, Luke Grant, Annalisa Savaresi, Sam Adelman, Wim Thiery

References

Brimicombe, C., et al. (2023). Wet Bulb Globe Temperature: Indicating Extreme Heat Risk on a Global Grid. *GeoHealth*, 7(2).

Buzan, J. R., Oleson, K., & Huber, M. (2015). Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. *Geoscientific Model Development*, *8*(2), 151–170.

Harrington, L. J., et al. (2016). Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. *Environmental Research Letters*, *11*(5).

Fischer, E. M., & Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. *Nature Climate Change*, *5*(6), 560–564.

Forster, P. M., et al. (2023). Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. *Earth System Science Data*, *15*(6), 2295–2327.

Schwingshackl, C., et al. (2021). Heat Stress Indicators in CMIP6: Estimating Future Trends and Exceedances of Impact-Relevant Thresholds. *Earth's Future*, *9*(3).

Thiery, W. et al. (2021). Intergenerational inequities in exposure to climate extremes. Science, 374(6564), 158–160.