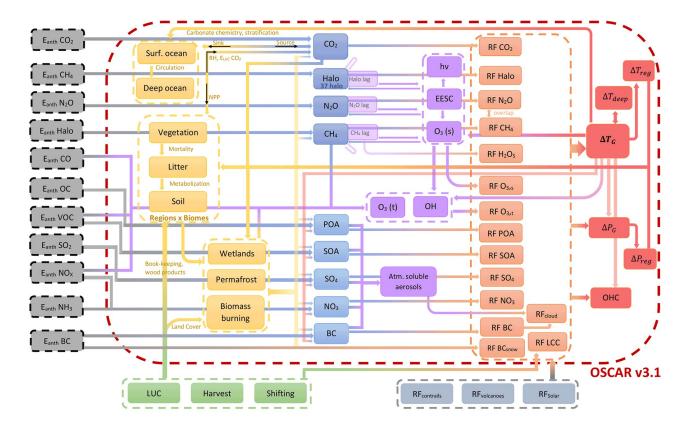


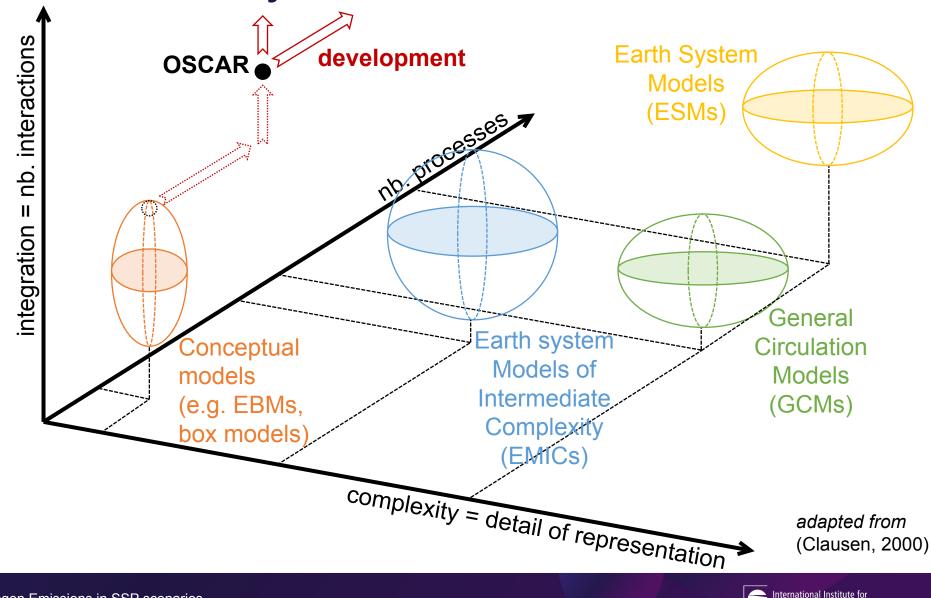
Emulating climate impacts within the OSCAR simple Earth system model


Thomas Gasser, Biqing Zhu, Danni Zhang, Xinrui Liu, and colleagues

2 May 2025 | EGU2025 – Vienna

What is OSCAR?

- A simple (or reduced-complexity) Earth system model whose modules are calibrated to emulate the behavior of complex models
- Fairly simple: 155 equations, 23 state variables, 198 parameters (although many are defined along extra dimensions)
- Running time: 20-60 min for ~1000 realizations of a historical simulation on a desktop computer
- Basic inputs: emissions of anthropogenic GHGs and other active species, <u>land-use change data</u>
- Basic outputs: global temperature change (no IAV), any intermediate variable (most of them global)
- Code (in python) open-source: <u>https://github.com/tgasser/OSCAR</u>


Overview of OSCAR's structure (Quilcaille et al., 2023)

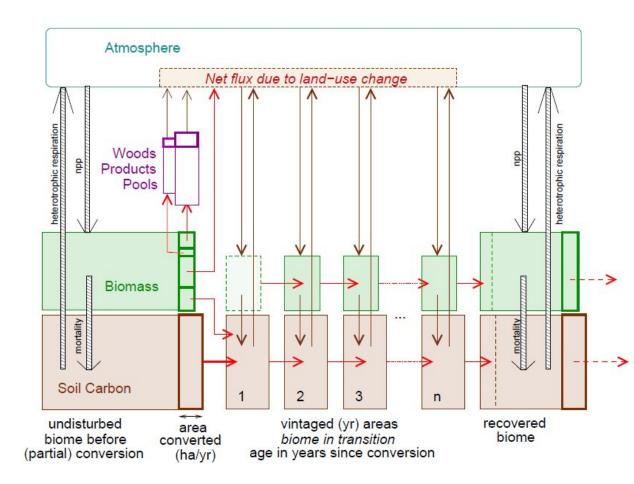
OSCAR in the hierarchy of models

Underpinning philosophy of development:

- high number of processes
- coupled together
- but each with simple formulation

I I A S A www.iiasa.ac.at

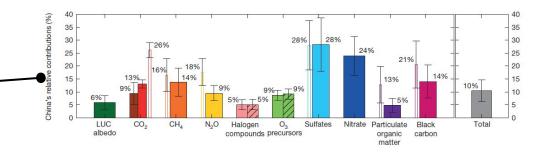

Model niche and concept


Core concept:

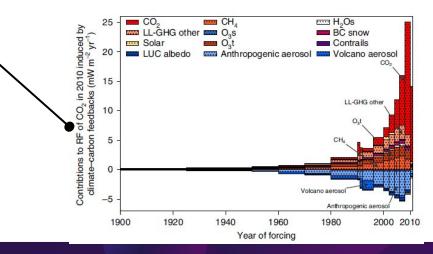
- OSCAR is a combination of emulators
- Pro: easier to add processes and feedbacks
- Con: harder to exactly emulate a given model

Model focus:

- Land carbon cycle: regionalized (up to ~300 regions in the upcoming v4)
- Biogeochemical feedbacks are endogenous:
 - land-use CO2 emissions (P) reported annually in the *Global Carbon Budget* (GCB)
 - land cover albedo radiative forcing reported annually in the *Indicators of Global Climate Change* (IGCC)
 - wetlands CH4 emissions (based on



OSCAR's original book-keeping module (Gitz, 2004)



Some illustrative past works

- Attributed China's historical contribution to global radiative forcing (<u>Li et al. 2016</u>)
- Integrated permafrost C into the system, and demonstrated its path-dependent impact on the remaining C budget (<u>Gasser et al., 2018</u>)
- Isolated the climate-carbon feedback to correct AR5 estimates of GWPs & GTPs (<u>Gasser et al., 2017</u>)
- Demonstrated that short-lived species have a long-term climate effect through the climate-carbon feedback (<u>Fu et al., 2020</u>)
- Coupled a crop yield emulator and investigated the feedback loop between climate – crop yield – negative emissions availability (Xu et al., 2022)
- Re-estimated land-use change emissions in the AR6 scenario database consistently with national inventories
- 5 | Modeling the Climatic Impact of Hydrogen Emissions in SSP scenarios

Time horizon (in years)	GWP			GTP		
	20	50	100	20	50	100
18-	CH ₄ ^a					
AR5 (default) ^b	84	48	28	67	14	4
$AR5 + Collins^b$	85	52	34	70	20	11
AR5+OSCAR	86	52	31	70	18	:
AR5 + OSCAR + climate IRF update	86	51	31	60	14	1
AR5 + OSCAR + IRF and REs updates	96	57	34	67	16	1
All OSCAR	96	57	34	66	18	9
All OSCAR (no CC-fdbk)	96	57	34	65	16	8

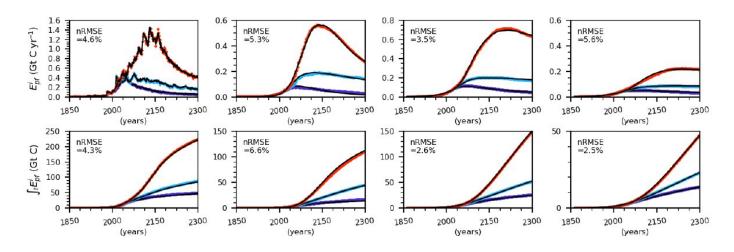
Why extend OSCAR with sectoral impacts?

- For impact assessment, large ensemble projections:
 - Uncertainty analysis through Monte Carlo
 - Multi-scenario analysis
 - Typically, 2000 realizations × 10–1000 scenarios
- For climate assessment, additional feedbacks in the Earth system (permafrost, peatland, fire, ...)
 - OSCAR can integrate more process than state-of-the-art ESMs
 - Be ready for CMIP7/AR7 scenarios

- For scenario assessment, more climate change and climate impact indicators available:
 - Great for scenario classification
 - Target use case: AR7 WG3

- Ultimate goal, implementation within IAM / scenario modeling:
 - Integration of impacts on socio-economic system (WG2-WG3 linkage)
 - Backward-inference inference of pathways compatible with limiting impacts (WG2-WG1 linkage)

Past work: permafrost



nature geoscience

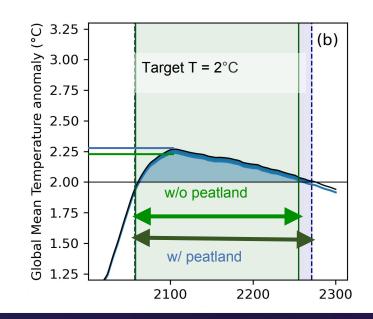
Corrected: Author Correction

Path-dependent reductions in CO₂ emission budgets caused by permafrost carbon release

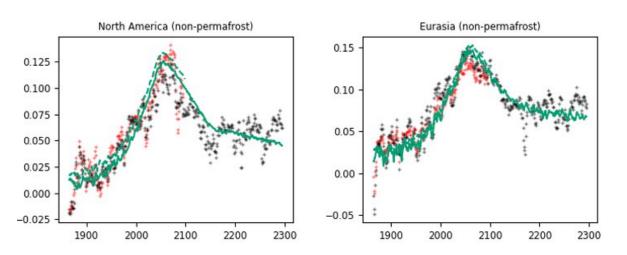
T. Gasser ¹*, M. Kechiar^{1,2}, P. Ciais ³, E. J. Burke ⁴, T. Kleinen ⁵, D. Zhu³, Y. Huang³, A. Ekici^{6,7} and M. Obersteiner¹

(Gasser et al., 2018)

- <u>Study</u>: effect of permafrost C release on remaining carbon budgets across ~3000 scenarios
- <u>Conclusion</u>: non-linearity and importance of overshoot
- <u>Lessons learned</u>: simulations up to 2300 are important!
 - For OSCAR: helps constrain parameters for long timescales
 - For ISIMIP: required to fully assess slow processes' response
- <u>Next</u>: update on ISIMIP3b models (but requires cSoilLayer variable)

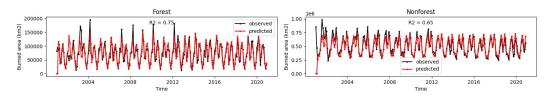

Recent work: peatland

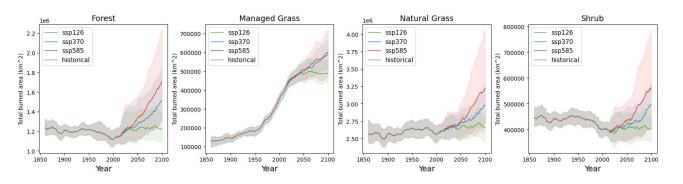
Warming of Northern Peatlands Increases the Global Temperature Overshoot Challenge


Biqing Zhu^{1,2,*}, Chunjing Qiu^{3,4,2*}, Thomas Gasser¹, Philippe Ciais², Robin D. Lamboll⁵, Ashley Ballantyne^{2,6}, Jinfeng Chang⁷, Nitin Chaudhary^{8,9}, Angela V. Gallego-Sala¹⁰, Bertrand Guenet¹¹, Joseph Holden¹², Fortunat Joos^{13,14}, Thomas Kleinen¹⁵, Min Jung Kwon^{2,16}, Irina Melnikova^{2,17}, Jurek Müller^{13,14}, Susan Page¹⁸, Elodie Salmon², Carl-Friedrich Schleussner^{19,20,1}, Guy Schurgers²¹, Gaurav P. Shrivastav¹, Narasinha J. Shurpali²², Katsumasa Tanaka^{2,17}, David Wårlind⁸, Sebastian Westermann²³, Yi Xi², Wenxin Zhang^{8,21}, Yuan Zhang^{2,24}, Dan Zhu²⁵

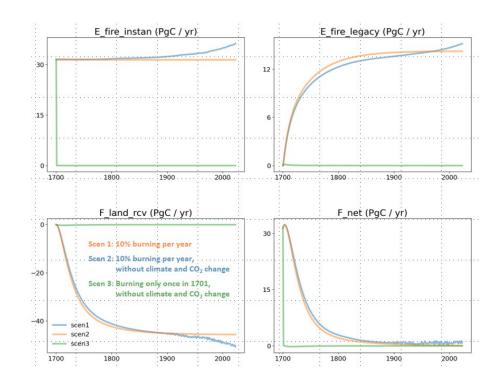
(Zhu et al., 2025;

accepted in One Earth)

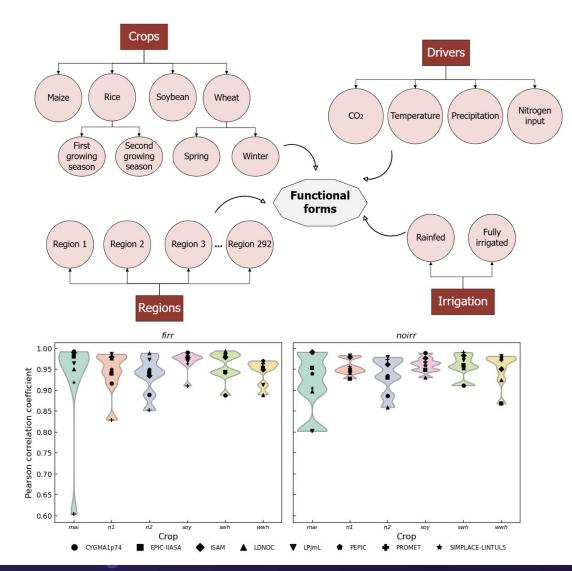

- <u>Study</u>: effect of peatland in overshoot scenarios
- <u>Conclusion</u>: can strengthen and lengthen the overshoot
- <u>Lessons learned</u>: overshoot scenarios are important
 / CO2-sensitivity simulations as well
 - For OSCAR: validation purposes / avoid too many covariations
 - For ISIMIP: policy relevance / process

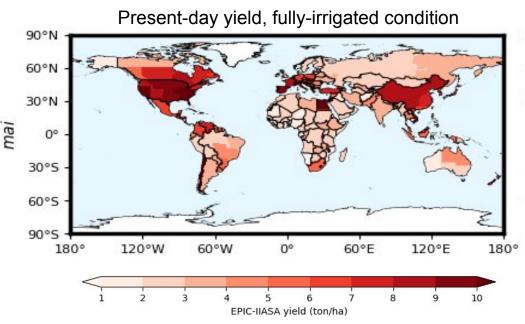

International Institute for Applied Systems Analysis

Ongoing work: fire


- <u>1st attempt</u>: direct emulation of GFED5 burnt area
 - Works well of intra-annual cycle
 - Leads to decrease in future burnt area

- <u>2nd attempt</u>: emulation of an ML model used over the historical period for the GCB
 - Doubts about emulation of emulation...




- <u>Next</u>: calibration on ISIMIP3b models (but requires PFT-based burnt area)
- <u>Goal</u>: net C budget of fires included regrowth through bookkeeping

Ongoing work: crop yields

- <u>Next</u>: add bio-energy crops (using ORCHIDEE, other models very welcome!)
- <u>Goal</u>: estimate negative emissions potential in AR6 and AR7 scenarios

Concluding remarks

- > This is a call for collaboration!
 - If you have data pending upload, we're looking forward to it
 - Sometimes additional simulations are extremely valuable...
 - ... if we contact you, please consider it carefully
 - We're very happy to invite modelling teams on our papers!
- The emulation of sectoral impacts is a topic of growing importance with a lot of potential down the road regarding linking IPCC WGs
 - OSCAR is a great tool to do this integration!
 - Opportunity to extend to other sectors, especially land-related (biomes, biodiversity, ...)
- > WE NEED YOU! (check out Biging Zhu's poster tomorrow)

Thank you.

Thomas Gasser

Senior Research Scholar Coordinator of the Earth system modeling theme Advancing Systems Analysis program (ASA) & Energy, Climate, and Environment program (ECE)

International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria

gasser@iiasa.ac.at