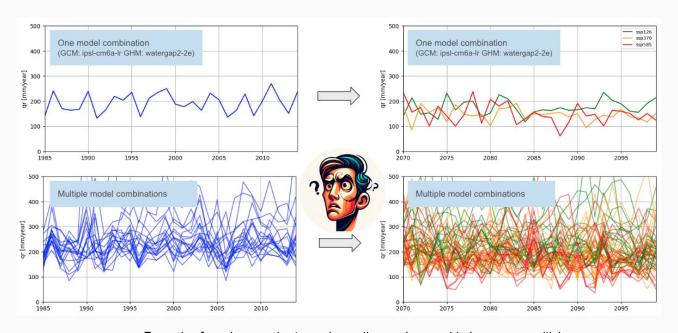

Exploring Climate Change Impacts on Global Water Resources

An Interactive Tool for Decision-Making and Adaptation

Guillaume Attard (AGEOCE)

With the participation of Laura Müller, Petra Döll, Fabian Kneier and Julien Bardonnet



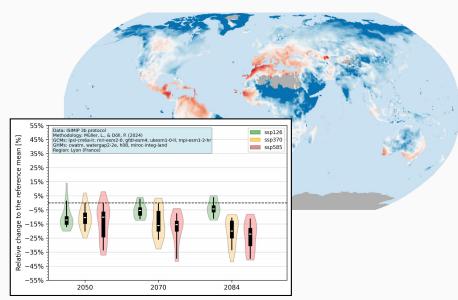
Quantifying Climate Change Hazards and Their Uncertainty is Challenging

Example of yearly groundwater recharge time series considering one or multiple combinations of models illustrating the variability of model outputs

Availability of Water Resources Under the Effect of Climate Change

Our aim is to provide global data to measure your exposure to

climate risks


✓ Determine the effects of different climate scenarios

Assess the level of consensus between models

✓ Identify critical changes

Several indicators are available

Using a robust scientific approach¹ and authoritative climate data²

¹Müller, L., and Döll, P. (2024): Quantifying and communicating uncertain climate change hazards in participatory climate change adaptation processes. Geosci. Commun., 7/2, 121–144. https://doi.org/10.5194/gc-7-121-2024

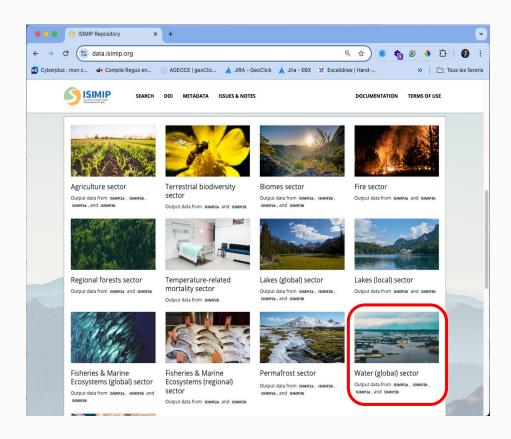
²Gosling S. N., Müller Schmied H., Bradley A., Burek P., Gedney N., Grillakis M., Guillaumot L., Hanasaki N., Ito A., Kou-Giesbrecht S., Koutroulis A., Nishina K., Otta K., Sahu R.-K., Satoh Y., Schewe J. (2024): ISIMIP3b Simulation Data from the Global Water Sector (v1.3). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.230418.3

Data

Data Sources: ISIMIP3b / Water Global

Temporal Coverage:

Reference Period: 1985–2014Projection Period: 2015–2100


Emissions Scenarios (3): SSP1-RCP2.6, SSP3-RCP7.0, SSP5-RCP8.5

Hydrological models (4): JULES-ES-vn6p3, MIROC-INTEG-LAND, CWATM, WaterGAP v2.2e

Circulation models (5): MPI-ESM1-2-HR, UKESM1-0-LL, MRI-ESM2-0, GFDL-ESM4, IPSL-CM6A-LR

Variables:

- Total Runoff.
- Groundwater Recharge,
- Total Evapotranspiration

Processing

Creation of 30-years composites for each combination of models and scenario (GCM*, GHM*, SSP*)

- Calculate the yearly and seasonal averaged variables for historical and future periods
- For each combination, calculate the relative changes between the projection and the historical values (Müller & Döll 2014).

Geosci. Commun., 7, 121–144, 2024 https://doi.org/10.5194/gc-7-121-2024 @ Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.



Quantifying and communicating uncertain climate change hazards in participatory climate change adaptation processes

Laura Müller¹ and Petra Döll^{1,2}

¹Institute of Physical Geography, Goethe University Frankfurt, Frankfurt, 60438, Germany

²Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F) Frankfurt, Frankfurt, 60325, Germany

30 years annual averaged historical recharge (1985-2015) according to 4 GCM / GHM combinations (0 to 500 mm/year - orange to blue)

*GCM: Global Circulation model *GHM: Global Hydrological Model

*SSP: Shared Socioeconomic Pathways

Technologies

 Data download and processing of netCDF file on a local machine into Cloud-Optimized GeoTIFF

 Ingestion and On-the-fly calculation using Google Earth Engine*

Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities.

Visit the explorer

https://ageoce.com/en/solutions/climate-change-water-explorer/

Home

Service

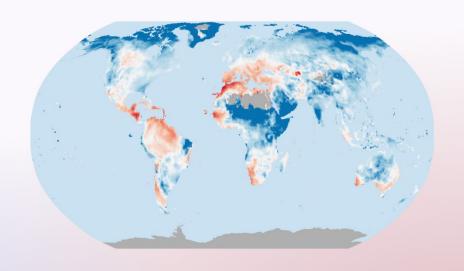
Solutions

Portfolio

Contact

⊕EN

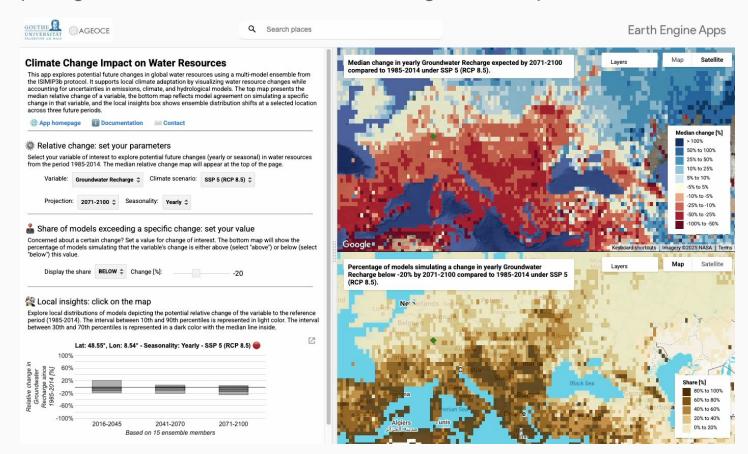
Explorer for climate change impacts on water resources


This web application is designed to visualize potential future changes in water resources worldwide. Developed through a collaboration with the Goethe University of Frankfurt, this tool leverages multi-model ensemble simulations from ISIMIP3b to support local climate change adaptation initiatives.

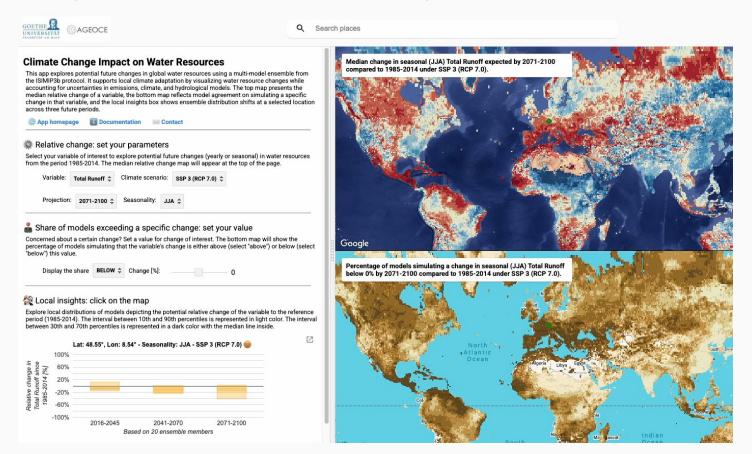
- Visualize how water resources might shift under different scenarios.
- Understand the agreement among models.
- Discover the percentage of models predicting changes that exceed userdefined thresholds.
- Dive into detailed data for actionable, location-specific adaptation planning.
- Account for uncertainties in greenhouse gas emissions and climate models.

Documentation

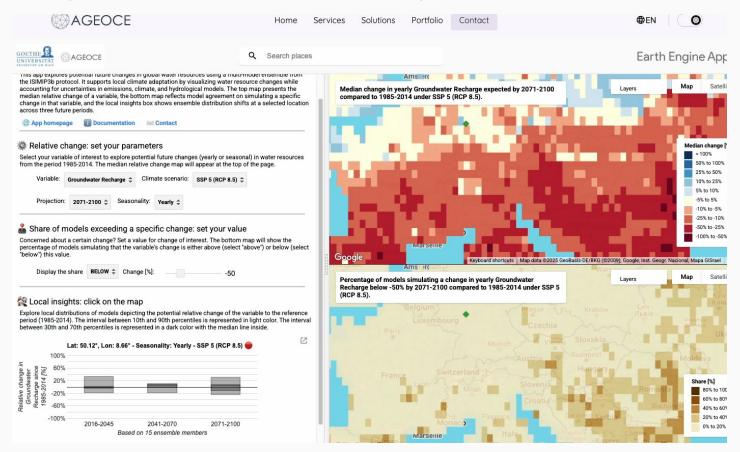
Live explorer


Request dataset

Explore potential future changes in water resources


https://ageoce.com/en/solutions/climate-change-water-explorer/

Determine where a certain change might occur


https://ageoce.com/en/solutions/climate-change-water-explorer/

Get local insights with percentile boxes

https://ageoce.com/en/solutions/climate-change-water-explorer/

