Climatic Change (2020) 163:1187-1205
https://doi.org/10.1007/510584-020-02847-7

®

Does comprehensive evaluation of hydrological models Check e
influence projected changes of mean and high flows apaaes
in the Godavari River basin?

Vimal Mishra'2@® - Harsh Shah - M. Rocio Rivas Lopez> - Anastasia Lobanova® -
Valentina Krysanova®

Received: 21 January 2020 /Accepted: 25 August 2020 /Published online: 21September2020
© Springer Nature B.V. 2020

Abstract

Understanding the projected changes in the mean and high flows remains a significant
challenge due to uncertainty arising from global climate models (GCMs) and hydrolog-
ical models. Moreover, the calibration approaches used for hydrological models can
influence the climate change impact assessment. We use the combination of three
hydrological models, four global climate models, and two RCPs (2.6 and 8.5) to analyze
the projected changes in mean flow, high flow, and the frequency of high flow under the
projected future climate in the Godavari River basin (GRB) until the gauge Tekra. The
two evaluation approaches: a simple approach (TASK A) based on the calibration and
validation at a single streamflow gauge station and a comprehensive approach (TASK B)
based on multi-variable and multisite calibration and validation and trend analysis were
employed to evaluate the hydrological models. The differences between the projected
changes in mean and high flows calculated using models after TASK A and TASK B
were estimated. Our results show that the differences can be up to 10-13% in mean
annual flow and high flow, and up to 40% in high flow frequency. The comprehensively
evaluated hydrological models were chosen for impact assessment, and they project
increases in mean and high flows, and the frequency of high flow at all four gauge
stations in the GRB. The projected increases are higher under RCP 8.5 and in the End
century (2071-2100). Our results demonstrate the importance of the comprehensive
evaluation of hydrological models in advance of climate change impact assessment.
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1 Introduction

Climate change poses an enormous risk to water availability and water management (Barnett
et al. 2005; Immerzeel et al. 2010). Freshwater availability under climate change can affect the
water requirements for irrigation and area under irrigation (Elliott et al. 2014). For instance,
Elliott et al. (2014) reported that limited freshwater under climate change could force about
20-60 Mha of irrigated cropland to rainfed globally. Climate change also has simultaneous
impacts on multisectors (e.g., water, agriculture, and ecosystems). For instance, Piontek et al.
(2014) reported that warming above 3 °C above 1980-2010 mean can affect about 11%
population with multisectoral impacts. Also, Wada and Bierkens (2014) argued that unsus-
tainable water consumption would rise under climate change, which could lead to a decline in
water availability despite the projected increase in precipitation.

Despite the extensive evaluation of climate change impacts on water resources at the global
and regional scales, Indian River basins are relatively less studied (Mall et al. 2006). Gosain
et al. (2006) based on Soil and Water Assessment Tool (SWAT) reported a decline in available
runoff under the warming climate in Indian River basins. Moreover, Gosain et al. (2011)
estimated climate change impacts on water yield in different river basins and reported both
increase and decline in water yield under the projected future climate. Ali et al. (2018) studied
the impacts of climate change on hydropower production in India. They reported that
hydropower production is projected to rise in the future climate due to the projected increase
in streamflow. Meenu et al. (2013) conducted a river basin (Tungabhadra River basin) study
and reported an increase in runoff and decline in evapotranspiration under the warming
climate. Similarly, Pechlivanidis et al. (2016) used multibasin modeling to show the changes
in hydrological fluxes in the Indian sub-continental river basins. Indian sub-continental river
basins are projected to experience a warmer and wetter climate (Mishra and Lilhare 2016),
which can have implications for water availability.

One of the adverse impacts of climate change is the increased frequency of extreme
hydroclimatic events (floods, extreme precipitation). The frequency and intensity of extreme
precipitation are projected to rise under the warming climate (Allan and Soden 2008; Prein
et al. 2017), which is directly related to the water holding capacity of the atmosphere (Pall et al.
2007; Mukherjee et al. 2018; Zhang et al. 2018), which is projected to increase under the
warming climate (Mukherjee et al. 2018; Ali et al. 2018). Increased frequency and intensity of
extreme precipitation can lead to frequent high flow events and flooding (Dottori et al. 2018;
Ali et al. 2019). River floods are among the costliest natural disasters that can have profound
socio-economic impacts under the warming climate. For instance, Dottori et al. (2018)
reported that human losses could rise by 70-83%, and direct flood damage can increase by
160-240% if the global mean temperature increases by 1.5 °C. Notwithstanding the implica-
tions of climate change on flooding, studies on understanding the flood and high-flow risk in
India under climate change are somewhat limited (Guhathakurta et al. 2011). Ali et al. (2019)
reported a significant increase in multiday flood events under climate change in India. They
(Ali et al. 2019) found that the risk of flooding in India is half under the lower (RCP 2.6)
emission scenario than that under the higher (RCP 8.5) emission scenario.
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Climate change impact assessment of hydrological processes is performed using hy-
drological models. While considering multiple global climate models (GCMs) for impact
assessment is common, most of the hydrological impact assessments are limited to a single
hydrological model. Multiple GCMs for the climate change impacts assessment provide a
better estimate of uncertainty arising from the GCMs. However, the quantification of
uncertainty in climate change impact assessment due to hydrological models is often
ignored or underestimated (Mishra et al. 2017). The intersectoral impact model intercom-
parison project (ISIMIP) is a unique effort to evaluate the climate change impacts
considering multiple GCMs and hydrological models (Warszawski et al. 2014). Eisner
et al. (2017) and Vetter et al. (2017) used nine regional hydrological models and five
GCMs to study climate change impacts on streamflow seasonality in 12 large river basins
worldwide, and the latter reported that hydrological models account for 16% of the total
uncertainty. These studies underscored the need for climate change impacts assessment
based on multiple hydrological models.

The combination of multiple hydrological and climate models helps in quantifying the
uncertainty of projections under climate change. However, the role of calibration and evalu-
ation of hydrological models on the projected changes is often ignored in the climate impact
assessment. Hydrological models intended for impact studies are often calibrated only to
discharge at the outlet gauge, i.e., not comprehensively or not calibrated at all (e.g., most of
the global hydrological models). The performance of individual models in the historical period
and their robustness can be attributed to the credibility of climate impact projections of
hydrological variables. According to Krysanova et al. (2018), a comprehensive evaluation of
hydrological models could provide more trustworthy projections with lower uncertainty for
climate change adaptation. Therefore, the scientific questions that we address here are—to
what extent do climate impact projections based on the simple and comprehensive model
evaluation approaches differ in the Godavari River basin in India? Which model evaluation
approach should be applied to enable more credible impact assessment results and why? And
what are the projected changes in streamflow and high flow in the Godavari River basin?

To respond on these questions, we aim to systematically examine the influence of the
comprehensive and simple model evaluation approaches on climate change impact results.
First, we apply two approaches for calibration and evaluation of hydrological models. The
simple approach is based on the calibration/evaluation of hydrological models against the
observed flow at the single gauge station (outlet of the river basin). On the other hand, the
comprehensive approach is based on calibration and evaluation of hydrological models at
multisites and for multiple hydrological variables (e.g., streamflow, evapotranspiration (ET),
high flow) and analysis of trends. Second, we apply hydrological models evaluated using both
approaches for impact assessment and compare the projections to examine the influence of two
approaches. Third, we hypothesize that the differences due to the two approaches in climate
change impact results are not negligible. If the differences are negligible, the hydrological
projections based on both approaches can be equally meaningful. However, if the differences
in projections based on the two approaches are substantial, then we consider the comprehen-
sively evaluated models more robust under the changed climate conditions. In the latter case,
the comprehensively evaluated hydrological models should be used for climate change impact
assessment in the GRB. Notwithstanding the number of previous impact studies (Gosain et al.
2011; Mishra and Lilhare 2016; Pechlivanidis et al. 2016; Shah and Mishra 2016), the role of
calibration and evaluation of hydrological models on climate change impacts assessment
remains unexplored in India.
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2 Study area

The Godavari River basin (GRB) is located within geographical coordinates of 73 to 84° E and
16 to 23° N, as shown in Fig. 1. The Godavari is the second longest (1465 km) river in India,
which passes through the states of Maharashtra, Telangana, Andhra Pradesh, Chhattisgarh,
Madhya Pradesh, Odisha, and Karnataka. GRB has a tropical climate, and the annual
maximum temperature varies between 26 and 44 °C (1969-2004). The basin experiences cold
weather from mid-October to mid-February, and the western and the northeastern parts are
colder than the other parts. The maximum rainfall occurs during the southwest monsoon (June
to September). Annual rainfall in the basin varies from 755 to 1531 mm while average annual
rainfall (1971-2005) is 1097 mm. Average water resources potential of the basin is 110,540
million cubic meters (MCM). Utilizable surface water resources in the basin are about 76,300
MCM. The basin has about 18 flood forecasting stations that are being monitored by the
Central Water Commission (CWC). The Godavari River basin experiences flooding in the
downstream regions while the coastal areas are cyclone prone. A large part of the Marathwada
region is drought prone. There are a number of places that are important for the socio-
economic perspective in the Godavari basin (Babar and Kaplay 2018).

We selected a sub-basin in the Godavari River basin with four gauge stations (Ghugus,
Pauni, Bamini and Tekra) (see Fig. 1) to minimize the impact of reservoir operation on
streamflow (Shah and Mishra 2016), because the part downstream of Tekra is largely affected
by the presence of major reservoirs. The selected area covers mainly Wardha (15.31% of
GRB), Weinganga (16.45% of GRB), and Pranhita (only a very small part) sub-catchments of
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Fig. 1 Base map of the Upper Godavari River Basin (GRB) and location on the gauge stations. The GRB has a
total 113664.4 km? catchment area till Tekra gauge station, while the catchment area till Pauni, Bamini, and
Ghugus gauge stations is 37905.5 km?2, 48953.9 km?, 21048.6 km?, respectively
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GRB. The major reservoirs in the chosen sub-basin are Isarpur, Totladoh, and Upper Wardha
with approximate volumes of 1254, 1241.1, and 786.5 MCM, respectively. The three reser-
voirs have been operational since 1982, 1989, and 1993, respectively. The major part of the
sub-basin (59.6%) is covered with agricultural land. Forest area is about 29.8% while water
bodies occupy 2.06% of the total basin area.

3 Data and methods
3.1 Data

We used WATer and global CHange (WATCH) Forcing Data Era Interim (WFDEI)
meteorological forcing (precipitation, mean, maximum and minimum surface air temper-
ature, relative humidity, surface downwelling shortwave radiation, and wind) data as the
observed forcing to drive the hydrological models. The WFDEI dataset was developed
using the ERA-Interim reanalysis product (Weedon et al. 2011). With the global cover-
age, WFDEI daily data is available from 1979 to 2016 at 0.5° resolution from the phase
2a of the ISIMIP project (https://www.isimip.org). ISIMIP provides a framework for the
intercomparison of global and regional-scale models within and across multiple sectors
to assess projected risks (Rosenzweig et al. 2017), and our study was done in this
framework. ISIMIP phase 2a serves for the evaluation of impact models using reanalysis
climate data, and the evaluated models are used afterwards for impact assessment, driven
by climate forcing provided from ISIMIP, phase 2b (Frieler et al. 2017). Using WFDEI
forcing data, we calibrated hydrological models against observed discharge and satellite-
derived evapotranspiration (ET) datasets.

We obtained observed discharge data from 1964 onwards for four gauges from the Indian
Central Water Commission (http://www.india-wris.nrsc.gov.in). Data have been measured by
area—velocity or slope—area methods. We checked discharge data quality by calculating the
coefficient of correlation () between annual mean discharge and total precipitation and found
a reasonable agreement with a correlation coefficient of 0.78. In addition, we checked the
observed flow data for the inconsistencies and abrupt shifts, which were not found.

We used the Global Land Evaporation Amsterdam Model (GLEAM) and the Moderate
Resolution Imaging Spectroradiometer (MODIS) global datasets for the evaluation of the actual
evapotranspiration simulated by the hydrological models. GLEAM is a set of algorithms that
estimate the components of terrestrial evaporation and root zone soil moisture. GLEAM v3 is
used to produce three new datasets, including GLEAM v3a, a global dataset based on satellite-
observed soil moisture, vegetation optical depth, snow water equivalent, reanalysis air temper-
ature, net radiation, and a multisource precipitation product (Miralles et al. 201 1a, b; Martens
et al. 2017). As GLEAM v3.2a spans 38 years (1980-2017), we selected it for this study. It is
available under http://www.gleam.eu at the daily time step and 0.25° spatial resolution.

MODIS latest global ET products are the first regular 1-km? land surface ET datasets for the
global vegetated land areas at 8-day, monthly, and annual intervals. MODIS global ET is
estimated using Mu et al.’s (2011) improved ET algorithm based on the Penman—Monteith
equation (Monteith 1965), which uses daily meteorological reanalysis data and 8-day remotely
sensed vegetation dynamics from MODIS as inputs. We obtained MODIS ET dataset from the
University of Montana (http:/files.ntsg.umt.edu/data/NTSG_Products/MOD16) for our
analysis.
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We obtained four bias-corrected GCM forcing data: GFDL-ESM2M, HadGEM2-ES,
IPSL-CMS5A-LR, and MIROCS5 GCMs that participated in the Coupled Model
Intercomparison Project 5 (CMIP5S) for two extreme RCPs (RCP2.6 and RCP8.5) for the
1970-2099 period from ISIMIP2b to analyze the projected changes in discharge under a
warming climate. The GCM data was bias-corrected using the method described in Hempel
et al. (2013) and Frieler et al. (2017) using EWEMBI data (Lange 2018). The EWEMBI
dataset was compiled to support the bias correction of climate input data for the impact
assessments carried out in ISIMIP2b. The EWEMBI data covers the entire globe at 0.5°
horizontal and daily temporal resolution from 1979 to 2016, and it is based on ERA-Interim
reanalysis data (ERAIL Dee et al. 2011), WFDEI data (Weedon et al. 2011), Earth2Observe
forcing data (E20BS; Calton et al. 2016), and NASA/GEWEX Surface Radiation Budget data
(SRB; Stackhouse et al. (2011). The CMIPS5 data availability constrained the selection of four
GCMs for the required daily atmospheric variables and period (Frieler et al. 2017). However,
the selected four GCMs provide a fractional range coverage (FRC; McSweeney and Jones
2016) that was close to FRC of any four randomly selected GCMs from CMIP5. Further
details on bias correction methods and the selection of GCMs can be obtained from Frieler
et al. (2017).

3.2 Hydrological models

We used three hydrological models (HMs) to assess the projected changes in mean and
extreme flows in the GRB.

The Soil and Water Assessment Tool (SWAT) is a watershed-scale hydrological model
developed by the United States Department of Agriculture, Agriculture Research Service
(USDA-ARS) (Arnold et al. 1998). The SWAT divides a watershed into sub-watersheds
and hydrological response units (HRUs) using land use, soil, and topography information to
simulate hydrological fluxes for each HRU at a daily time step. SWAT uses curve numbers to
determine runoff while evapotranspiration is derived from the Penman—Monteith equation. We
calibrated SWAT model manually by changing some soil, curve number (CN), groundwater,
and management parameters as described in Neitsch et al. (2002).

The Soil and Water Integrated Model (SWIM) is a continuous-time semi-distributed model
(Krysanova et al. 2000), which is based on the previously developed models SWAT (Arnold
et al. 1993) and MATSALU (Krysanova et al. 1989). The SWIM works at a daily time step
and uses a 3-level disaggregation scheme: basin—sub-basins—hydrotopes. Hydrotope is defined
as a set of units that belong to the same sub-basin, characterized by the same soil and land use
types, and therefore having the same hydrological behavior. In the SWIM, surface runoff is a
nonlinear function of precipitation and a retention coefficient, whereas sub-surface flow occurs
once the storage in the soil layer exceeds field capacity after percolation. The Priestley—Taylor
method is used to estimate evapotranspiration. The SWIM uses Muskingum flow routing
model (Maidment 1993) to simulate streamflow. We manually adjusted groundwater param-
eters, two routing coefficients, factor affecting saturated conductivity, baseflow, and evapo-
transpiration to calibrate the SWIM.

The variable infiltration capacity (VIC) model is a process-based macroscale hydrological
model (Liang et al. 1994, 1996). It simulates daily/sub-daily water and energy fluxes at each
grid cell. The VIC model estimates runoff and baseflow using the Ao model (Franchini and
Pacciani 1991). Sub-grid variability of vegetation, soil, and topography are represented within
grid cell. The Penman—Monteith equation is used to estimate evapotranspiration. A
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stand-alone routing model (Lohmann et al. 1996) based on the linearized Saint—
Venant equation is used to route runoff and baseflow to the selected gauge locations.
We manually calibrated the simulated discharge by modifying soil parameters as
described in Shah and Mishra (2016).

We used the same meteorological forcings to drive three hydrological models for the
historical and future periods. Elevation, soil, and vegetation parameters were obtained from
Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM), Harmonized
World Soil Database (HWSD), and Advanced Very High-Resolution Radiometer
(AVHRR), respectively.

3.3 Simple and comprehensive evaluation approaches

We used the simple and comprehensive approaches to evaluate the performance of the
hydrological models. All three hydrological models were calibrated manually. Therefore, the
model evaluation was done twice, firstly using the simple calibration/validation approach
(TASK A) and secondly applying a more comprehensive approach (TASK B) suggested as
guidelines for model evaluation by Krysanova et al. (2018). TASK A was performed by
calibrating and validating models only for discharge at the catchment outlet (Tekra) with the
monthly time step. In TASK B, we evaluated the model performance using more indicators:
monthly discharge at four gauge stations, long-term mean monthly evapotranspiration over the
basin, and three (90th, 95th, and 99th) high flow percentiles. In addition, we compared trends
in the observed and simulated time series of discharge at four gauge stations in the GRB. Here,
we assume that the application of TASK B for model evaluation, in case of success, would
increase the confidence in the simulated hydrological variables and in the projections based on
that under the warming climate. After evaluation, the models could be weighted for impact
assessment, or a model could be rejected from the ensemble for a certain indicator in case its
performance for this indicator is poor (as suggested in Krysanova et al. 2018).

We evaluated the performance of three hydrological models for the monthly discharge in
the calibration (1980-1989) and validation (1990-1999) periods and for the high flows (daily
discharge exceeding the 90th, 95th, and 99th percentiles) over the period of 1980-1999. We
evaluated the model performance using the following: Nash—Sutcliffe efficiency (NSE; Nash
and Sutcliffe 1970), Kling—Gupta efficiency (KGE; Ghosh et al. 2009 and Kling et al. 2012),
and percent bias (PBIAS). Since we did not calibrate models for high flow conditions, only
PBIAS was used for evaluation of high flow percentiles while all three performance measures
were used to evaluate the monthly discharge. The model performance was evaluated as good if
the following levels were reached: NSE>0.7, KGE>0.7, and |PBIAS| <15, and as satisfac-
tory if 0—5 <NSE<0.7,0.5<KGE <0.7, and 15 < [PBIAS| < 25. Using Mann—Kendall trend
test (Mann 1945) at the 5% significance level, we estimated low flow (10th), mean flow (50th),
and high flow (90th) trend directions for the observed and simulated flows using simulations
obtained in TASK B.

Further, to understand the influence of the simple and comprehensive evaluation ap-
proaches on simulated impacts, we estimated the differences in projected changes in mean
monthly and mean annual discharge using model parameterizations after the TASK A and
TASK B model evaluations for the Near (N: 2010-2039), Mid (M: 2040-2069), and End (E:
2070-2099) periods against the historical reference (H: 1970-1999) period.

Monthly change AQ for a month i between future (F) and historical (H) periods based on
model parametrizations after tasks A and B (in m? s71):
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AQi(FvA) =0 (FvA)_Qi (HvA)

AQ; (F,B) = Q; (F,B)-0Q; (H,B)

Monthly difference in AQ for a month i between future (F) and historical (/) periods based on
model parametrizations after tasks B and A (in m? s71):

Difference in AQ; (F) = (0; (F,B)=0Q; (H,B))~(Q; (F,A)~Q; (H,A))

Relative annual difference in AQ between future (F) and historical (H) periods based on model
parametrizations after tasks B and A (in %):

QULD-OULE)  gg) (UL 1)

Relative annual difference in AQ(F) = ( 0.(H.5) O.(H.A)

Here, F' (Near, Mid, and End) and H are the future and historic reference periods, respectively.

We analyzed the uncertainty among the three hydrological models and four GCMs by
estimating one standard deviation (of 12 simulations) using TASK B simulation results. In
addition, we assigned weighting coefficients (WCOs) to each hydrological model to estimate
impacts based on their performance for the mean monthly and 99th percentile flows (Table 1).

The long-term mean monthly and annual discharge changes for three hydrological models
and associated uncertainties were estimated under the RCP 2.6 and RCP 8.5 scenarios.
Moreover, we calculated the changes in flow duration curve (Vogel and Fennessey 1994,
1995) for the Near, Mid, and End periods under RCP 2.6 and RCP 8.5. We also evaluated
uncertainty among datasets and the impact of climate change on high flow by considering
90th, 95th, and 99th percentiles of discharge.

4 Results

First, we compared precipitation, maximum, and minimum temperatures from WFDEI and
India Meteorological Department (IMD) at daily and monthly time scales and found that they
are in good agreement (see more details in Supplementary, part X1 and Fig. S1), Therefore,
WFDEI data can be used to evaluate model performance and to study hydrological impacts.

4.1 Performance of the hydrological models

We performed manual calibration and validation of the hydrological models using the two
methods referred to as TASK A and TASK B, and results are presented in Table 1. In TASK
A, all three hydrological models were calibrated and validated at only one gauge (Tekra) for
discharge. We found a “good” performance of all three hydrological models (Table 1).
Regarding the evaluation of monthly dynamics in TASK B and considering the whole set
of criteria at four gauge stations (Table 1), we note that all the models show good performance
(17 out of 18 values are “good”) for the outlet station Tekra. Slightly lower performance can be
seen for Bamini with 15 out of 18 values being in the “good” range. Results for Pauni and
especially for Ghugus are weaker as about 33% of criteria values correspond to “satisfactory”
or even “poor” (three values for Ghugus). The reason for the relatively weaker performance of
models at Ghugus, Bamini, and Pauni is probably the difference between WFDEI and IMD
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daily precipitation in these smaller sub-catchments. Also, as we calibrated and evaluated the
models without considering water management (reservoirs, water abstraction for agriculture),
it may affect the performance in these sub-catchments as well.

Comparing performances of the three hydrological models for monthly dynamics, we find
that the SWIM shows the best performance, with 83% of criteria values corresponding to a
good performance, according to the accepted thresholds. The SWAT performed slightly
weaker with 71% of the values in the “good” ranges and the rest corresponding to the
“satisfactory” (21%) or “poor” (8%). The VIC model shows a good performance for all three
criteria at two gauges: Bamini and Tekra, however, weaker performance at the other two
stations. Considering the thresholds for satisfactory performance, all the results are above 0.5
for NSE and KGE in all the cases except one (VIC at Ghugus, one period) and
|[PBIAS| below 25% in all cases except three (SWAT and VIC at Ghugus, one period
and SWAT at Bamini, one period). Therefore, in general, the results of all hydrolog-
ical models can be accepted as being good or satisfactory (with a few exclusions) and
thus suitable for climate impact assessment.

In addition, we analyzed trends in the observed and simulated data. We found the positive
trends in the observed and simulated 50th flow at the four locations in the GRB for the 1980
1999 period (Table S1). On the other hand, negative trends were observed for 10th flow in
most cases based on observed data and simulations from three models. If to consider all trends,
the trend directions were successfully captured by the SWIM and VIC. However, except for
the observed 50th flow at Pauni, all other trends were not statistically significant at 5% level,
meaning that there are practically no trends. Thus, we can conclude that trend analysis revealed
identical results based on the observed and simulated time series, with one exception.

Regarding the evaluation of high flows and looking at the whole set of criteria values for
three percentiles at four gauge stations (Table 1), we can see that performance for the Tekra
station is the best, with eight of nine values (89%) in the good or satisfactory categories. The
performance is slightly weaker for Pauni, with seven of nine values belonging to “good” or
“satisfactory.” The performance for Ghugus and Bamini is rather low, with six criteria values
out of nine showing [PBIAS| above 25%. Comparing the three hydrological models, we find
that the SWAT was successful in simulating 99th flow at all gauge stations (all four |PBIAS]
values below 15%), but weaker in reproducing two other percentiles (90th and 95th). The
SWIM shows satisfactory performance for 95th in terms of [PBIAS| (all four values below
25%). Moreover, the VIC model demonstrated better results for 95th and 90th (5 of 8 values
below 15%) compared with 99th. Overall, our results indicate that the impact assessment
considering high flows can be done for three percentiles with all three hydrological models at
Tekra and with the SWAT for 99th flow at all the four stations.

In addition to discharge, we evaluated the model performance for the second variable,
actual evapotranspiration, and compared the long-term mean monthly ET simulated by the
three hydrological models against ET from GLEAMvV3.2 and MODIS (Fig. S2). We found that
ET simulated by the SWIM is closer to ET from GLEAM with a correlation of 0.89 (0.77 for
SWAT, 0.86 for VIC). ET simulated by the SWAT and VIC models is closer to that of
MODIS, with a correlation of 0.89 and 0.87, respectively (0.7 for SWIM). Although GLEAM
and MODIS datasets are based on observation data, they include other sources (e.g., reanal-
ysis). According to Miralles et al. (2011a), GLEAM underestimates ET during the monsoon
season by 15-20% which might be attributed to considering only three land surface classes for
land evaporation estimation. Moreover, the bias in simulated ET can be attributed to different
schemes and input parameters used by hydrological models (Shah et al. 2019). Overall, we can

@ Springer



Climatic Change (2020) 163:1187-1205 1197

conclude that the hydrological models successfully captured the seasonal cycle of ET over the
Godavari basin.

4.2 Analysis of climate scenarios

We analyzed the projected changes in surface air mean temperature and precipitation over the
upper Godavari River basin using scenarios from the four GCMs and two RCPs (Figs. S3—S4).
The projected increase in the long-term mean annual temperature ranges from 1.1 °C in the
Near future to 1.4 °C in the Mid century and to 1.3 °C in the End period for RCP 2.6. On the
other hand, under the RCP 8.5, the temperature is projected to rise by 1.1 °C in the Near future
to 4.4 °C in the End period, according to medians of the climate models ensemble. A slight
decrease by the end of the century under RCP 2.6 is due to stabilization of the CO, level
assumed in this scenario. Comparing projections from different GCMs, we can see that [PSL-
CMS5A-LR shows the highest increase while MIROCS5 shows the lowest in all three periods
under both RCPs. The long-term mean monthly temperature shows an increase by all GCMs in
both RCP scenarios, three periods and all months, with a few exceptions (e.g., HadGEM2-ES
showing a minor decrease in November in the near future). Difference between the projected
temperatures under RCP 2.6 and 8.5 becomes notable in the middle of the century and raises
further in the far future period. Another observation is that the seasonal anomalies of
temperature projected by the GCMs fluctuate during the year, being lower in the monsoon
season (August—September) when usually the temperature is lower than in summer.

All GCMs show an increase in the long-term mean annual precipitation in the GRB agreed
by most of the models for all three periods under both RCPs. The mean increase ranges from
13 mm in the near period to 138 mm in the mid and to 124 mm at the end century for RCP 2.6.
Under RCP 8.5, mean annual precipitation is projected to increase by 138 mm in the near
period, 207 mm in the mid, and 239 mm in the far future period, according to the medians of
the climate models ensemble. Some stabilization of changes in precipitation is observed for
RCP 2.6, similar as for temperature. However, IPSL-CM5A-LR does not show a stabilization
but a very strong decrease by the end century (opposite to its increasing trend in temperature).
HadGEM?2 shows the highest increase in precipitation.

The highest seasonal precipitation increase is projected in the rainy season (June—
September/October) in all three periods for both RCPs, with a few exceptions: decrease
of precipitation in June (minor) and July (— 30 mm) under RCP 2.6 in the near future, the
latter would mean a delay in the onset of the rainy season (Fig. S4). The magnitude of
increase for the ensemble median reaches its maxima of ~ 50 mm in August under RCP 2.6
(second period) and 88 mm in June under RCP 8.5 (end of the century). Rather, small
projected changes are observed in the rest of the season: from November to May in all the
three periods, ranging from — 6.5 mm (in January, second period, RCP 8.5) to 5 mm (in
April, second period, RCP2.6). The GCM precipitation projections show a higher uncer-
tainty in the rainy season (June—September/October) compared with that in the dry months
(October/November—May).

Based on results of models performance for monthly discharge (Table 1), we assigned
(qualitatively) weighting coefficients of 0.4, 0.3, and 0.3 to the SWIM, SWAT, and VIC
outputs, respectively, as SWIM performed better than other two models. Other WCOs were
assigned for 99th percentile based on Table 1: 0.3, 0.5, and 0.2 to the SWIM, SWAT and VIC,
respectively, as SWAT showed the best performance and VIC the weakest. These WCOs are
used for evaluation of impacts based on the WCOs in Sections 4.3—4.4.
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4.3 Projected changes in discharge

Our aim was to evaluate the influence of two calibration/evaluation approaches on the
hydrological projections in the Godavari River basin. Therefore, we analyzed the effect of
the two calibration methods (TASK A and TASK B) on monthly and annual discharge
projections at four gauge stations (Fig. 2, left and right). In addition, we also analyzed the
influence of calibration methods on projections of high flow (99th percentile) and the
frequency of high flows (Fig. 2, right part). For that, we used the ensemble mean of HMs
and GCMs for RCP2.6 and RCP8.5 to calculate the projected changes in discharge during
three future periods based on TASK A and TASK B, and then, the differences between (TASK
B and TASK A) projected changes in mean monthly (in m3/s) and mean annual (in %)
discharge were estimated.

We find that differences in projected mean monthly discharge changes at Bamini and Tekra
are high (reaching 150 m3/s) during the monsoon season (June-September). Moreover, the
mean monthly differences increase over time (from Near to End) and warming scenarios (from
RCP2.6 to RCPS8.5). The projected change in mean monthly discharge under TASK B is
greater (150 m3/s) than under TASK A at Tekra station.

The differences in mean annual discharge are not exceeding 3% at Ghugus, Pauni, and
Tekra stations. However, about 10% difference in the projected changes in mean annual flows
was found at Bamini. Similar, but slightly higher differences (about 14% at Bamini) were
found for the projected high flows, and quite considerable differences could be noticed for the
frequency of high flow: up to 35-40% at three gauge stations in the GRB. Overall, we can see
that the calibration approaches of the hydrological models do influence the projected changes
in discharge and high flow under the warming climate. Since TASK B is based on a more
rigorous evaluation of hydrological models, and models after TASK B are more robust, further
we used models after the comprehensive evaluation for assessment of climate change impacts
in GRB under the warming climate.

Next, we estimated the projected changes and associated uncertainties in mean monthly
flow using ensemble mean of hydrological models (Fig. 3), and results for every of three
models can be seen in Supplementary (Figs. S5-S7). Uncertainty (based on one standard
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Fig. 3 Projected change in mean monthly and mean annual discharge (Q) under RCP 2.6 and RCP8.5 scenarios,
calculated using ensemble mean of hydrological models (VIC, SWAT, and SWIM) simulations based on the
comprehensive (TASK B) approach for the Near, Mid, and End terms at four gauge locations in the Godavari
River basin. Spread and error bars in (d), (h), (/), and (p) show overall and HM-related uncertainty in the results
with gray and black colors, respectively

deviation) in the projected changes and influence of the ensemble mean and WCO methods were
evaluated. A negligible difference between results based on the WCOs and ensemble mean
methods was found for the mean monthly discharge, which could be attributed to similar WCOs
of the models. Further, we estimated uncertainty in annual discharge due to three hydrological
models by considering the largest standard deviation in the projected change for a single GCM.
To do so, we compared the standard deviations of the projected change from the combination of
three models with each GCM for each period. Then, we selected the HM and GCM combination
with the largest uncertainty to represent uncertainty arising from the hydrological models. The
overall uncertainty due to hydrological models and GCMs was estimated using a standard
deviation of 12 simulations (3 hydrological models and 4 GCMs) (Fig. 3).

Our results in Fig. 3 show that mean monthly discharge is projected to increase (except
June—August of RCP 2.6 in Near future) under the warming climate during the monsoon
season under both RCPs. Mean annual discharge is projected to increase by 25-75% at the end
of the twenty-first century at four gauge stations under RCP 8.5. Uncertainty in the projected
discharge due to GCMs is substantially higher than that due to three hydrological models (Fig.
3(d, h, 1, p)). All hydrological models project a higher increase in discharge during the
monsoon season, which can be attributed to the projected increase in precipitation in this
season.

Besides, we estimated changes in flow duration curves that describe the relationships
between flow and probability of exceedance of time (Ali et al. 2018) at four gauge stations
in the GRB (see in Supplementary, part X2 and Fig. S8).

Mishra and Lilhare (2016) reported that streamflow in the Godavari River basin is more
sensitive to change in the monsoon season precipitation in comparison with the warming.
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Therefore, the projected changes in the flow are largely driven by the increase in the monsoon
precipitation under the warming climate. In contrast to our findings, Gosain et al. (2011)
reported a decline of about 30% in water yield in the Godavari River basin by the end of the
twenty-first century. However, their findings were based on only one climate model. We also
note that the uncertainty due to hydrological models is substantially lower than the uncertainty
in the projected discharge due to GCMs. Therefore, reducing the precipitation uncertainty in
the GCMs would enhance the decision making at the river basin scale.

4.4 Projected changes in high flows

Finally, we estimated the projected changes in high flow (90th, 95th, and 99th percentiles of
daily flow) and the frequency of high-flow events (number of days exceeding high flow
threshold) at the four gauge stations in the GRB using hydrological models after TASK B. The
projected changes in high flow were estimated against the historical period for three periods
under two RCPs (Fig. 4). We can see that the multimodel ensemble means of high flows are
projected to increase at all four gauge stations. Moreover, the projected rise in high flows under
RCP 8.5 is considerably higher than under RCP 2.6, which indicates the implications of
climate change mitigation. Our results show that the uncertainty in the projected high flows is
lower in the Near and Mid periods than at the end of century (Fig. 4). We did not find
considerable differences in the projected changes in high flows based on the ensemble mean
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Fig. 4 Changes in high flows (90th, 95th, and 99th percentiles of daily flow) magnitude during the Near, Mid,
and End periods calculated against the historical reference period (1971-2000). Error bars show overall
uncertainty arising from the four GCM and three HM combinations
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and with model weighting. The maximum difference of 5% for 99th percentile was found (Fig.
S9), which further indicates that the projected changes are largely driven by the precipitation
projections in GCMs. Notwithstanding the uncertainty arising from GCMs, the frequency of
high flows based on 90th, 95th, and 99th percentiles is projected to increase at all four stations
of the GRB (Fig. S10). The projected increase is higher for the End period in comparison with
the Near or Mid periods. Moreover, the projected increase in high flow frequency is higher
under RCP 8.5 compared with RCP 2.6.

A majority of GCMs under CMIP5 show an increase in the monsoon season precipitation
(Chaturvedi et al. 2012; Menon et al. 2013). In addition, a consistent increase in the frequency
of extreme precipitation is projected (Goswami et al. 2006; Mishra et al. 2014). The
projected rise in the intensity of extreme precipitation is associated with the water
holding capacity of the atmosphere that is projected to rise in the warming climate
(Mukherjee et al. 2018; Zhang et al. 2018). The projected rise in high flows and the
frequency of high flows can be attributed to the projected increase in extreme
precipitation. However, previous studies reported that high flows are not only affected
by extreme precipitation, but antecedent moisture conditions can also play a signifi-
cant role (Sharma et al. 2018). For instance, Sharma et al. (2018) reported that an
increase in extreme precipitation might not necessarily translate in the increased
floods. Similarly, Garg and Mishra (2019) analyzed the role of initial moisture
conditions and extreme precipitation in the GRB and found that the combination of
the wet initial condition and extreme precipitation can produce high flows in the
observed and projected climates. Therefore, changes in the antecedent moisture con-
dition, land cover, and extreme precipitation all can influence the projected changes in
high flows in the GRB.

5 Discussion and conclusions

The Godavari is one of the major river basins in India, which is affected by climate conditions
and topography. Understanding of the projected changes in streamflow under the future
climate is essential for climate change adaptation. Hydrological assessments under climate
change are often performed using the bias-corrected and downscaled projections that are
appropriate at regional scale (Wood et al. 2004; Frieler et al. 2017). However, global
assessments are generally based on the global hydrological models that are not calibrated
(Schewe et al. 2014; Warszawski et al. 2014). The use of hydrological models in climate
change impact assessment depends on model parameters that are either calibrated or based on
empirical knowledge (Merz et al. 2011). Hydrological models applied at the river basin scale
are often calibrated using observed discharge data at the outlet (Mishra and Lilhare 2016). The
calibration parameters are considered static throughout the time period for which a hydrolog-
ical model is applied. However, there are uncertainties associated with climate change
projections due to the choice of the calibration period and method (Wilby 2005). Moreover,
the calibration parameters can vary from upstream to downstream of the catchment (Merz et al.
2011), which highlights the need for multisite model evaluation.

Our results showed that the comprehensive evaluation of hydrological models based on
streamflow, ET, high flow, and trends in streamflow is more robust for climate change impact
assessment in the Godavari River basin, and differences in impacts based on two calibration
methods (Section 4.3) are notable. Depending on the combination of catchment and climate
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characteristics (Brown et al. 2014), the differences in impacts based on simple and compre-
hensive calibration approaches can be significant and influence the climate change impact
assessment in the basin. Therefore, taking into account the higher robustness of the models
after the comprehensive evaluation, we find them more reliable for climate change impact
assessment and results based on them more trustworthy.

Climate change impact assessment at the regional scale is often influenced by different
uncertainties. The primary source of uncertainty is the climate change projections from global
climate models (Kay et al. 2009). However, hydrological models can also contribute substantial
uncertainty due to differences in their process representation and parameterization (Poulin et al.
2011; Mishra et al. 2017). We used three hydrological models, which were calibrated and
evaluated using two approaches. As expected, three models showed differences in their
performance to simulate streamflow, ET, and high flows. However, all the hydrological models
projected an increase in streamflow in the Godavari River basin under the future climate. The
projected increase in mean and high flows can be attributed to the projected increase in the
monsoon season precipitation. Moreover, consistent with the previous studies (Teng et al. 2012;
Thompson et al. 2013; Clark et al. 2016; Vetter et al. 2017), uncertainty in mean annual
streamflow from the GCMs is higher than that from hydrological models. Therefore, there is a
need to account for the uncertainty in the climate change adaptation at the river basin scale.

Based on our findings, the following conclusions can be made:

1. The climate in the Godavari River basin is projected to become warmer and wetter in
future for both RCP 2.6 and RCP 8.5 scenarios. Projected increase in temperature varies
from about 1 °C in the Near period to 4.5 °C in the End period under the high emission
scenario RCP 8.5. In addition, precipitation is also projected to increase considerably
under RCP 8.5 in the End period.

2. The combination of three hydrological models and four GCMs was used to study the
impacts of climate change on mean annual discharge, high flows, and the frequency of
high flows under the warming climate. The hydrological models were calibrated and
validated using the simple and more comprehensive approaches. The hydrological models
performed well or satisfactory against discharge, ET, and high flows at the four gauge
stations in the GRB.

3. The previous study (Krysanova et al. 2018) suggested to use the comprehensive evalua-
tion of hydrological models as more trustworthy for climate change impact assessment
and climate change adaptation. We estimated differences between the projected changes
in mean and high flows based on two calibration methods. Our results show that two
calibration and validation approaches lead to considerable differences in the projected
changes that can have implications for climate change adaptation. Since models after the
comprehensive evaluation are more robust, these model versions were used for the
assessment of climate change impacts.

4. The comprehensively evaluated hydrological models projected increased discharge, high
flows, and frequency of high flows under the future climate at all gauge stations. The
projected rise in discharge, high flow magnitude, and frequency increases with time (End
period) and emission scenario (RCP 8.5). In addition, models project substantial changes
in the flow duration curves, which can have implications for hydropower production,
water management, and ecology of the basin.

5. The uncertainty arising from hydrological models is substantially lower than the uncer-
tainty from GCMs, indicating the need for improving GCMs projections and their
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resolution (Aadhar and Mishra 2019) for use in climate change impact assessment.
However, applying multiple hydrological models that are comprehensively evaluated
can provide better confidence in the projected changes.
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